Microcavity Raman Laser-Based FMCW LiDAR with Enhanced Echo Sensitivity

激光雷达 激光器 测距 光学 连续波 激光功率缩放 信号(编程语言) 电流计 拉曼光谱 放大器 分布反馈激光器 Echo(通信协议) 物理 材料科学 光电子学 计算机科学 电信 CMOS芯片 程序设计语言 计算机网络
作者
Mingfang Li,Mingwang Tian,Chenxiao Lin,Sihong Chen,Zhipeng Feng,Y. X. Tan
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:11 (2): 801-809 被引量:3
标识
DOI:10.1021/acsphotonics.3c01774
摘要

Frequency-modulated continuous-wave laser detection and ranging (FMCW LiDAR) is a useful technology with various applications. However, numerous existing FMCW LiDAR systems are bulky, restricting their applicability in scenarios where minimizing the form factor is essential. Another major limitation is their echo-signal sensitivity. Considering that the detected targets are typically noncooperative, efficient detection of scattered light is imperative. Based on that, a microcavity Raman laser-based FMCW LiDAR is proposed combined with laser feedback technique. In the laser feedback regime, weak echo signals from targets participate in the stimulated radiation of the laser and are enhanced spontaneously when the measurement signal resonates with the laser relaxation oscillation. Without extra optical amplifiers, the laser cavity functions as an intrinsic amplifier and provides an improved signal-to-noise ratio of over 30 dB compared with conventional frequency swept interference methods. The response optical power limit can be down to 7.92 fW in the experiment. The standard deviation in 10 measurements is about 217 μm when targeting an aluminum block. By combining the proposed system with a 2-axis galvanometer scanner, 3D imaging of actual scenes can also be effectively reconstructed. This study illustrates a microcavity Raman laser-based device for conducting FMCW ranging measurements. It employs an extremely low-power near-infrared laser for detection, effectively addressing the issue of laser active detection equipment being easily detected.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
认真勒完成签到 ,获得积分10
1秒前
可爱的函函应助miao采纳,获得10
1秒前
小狐狸完成签到,获得积分10
1秒前
1秒前
Wangjf完成签到 ,获得积分10
1秒前
1秒前
在水一方应助柯卿彦采纳,获得10
2秒前
3秒前
FairyLeaf完成签到 ,获得积分10
3秒前
JamesPei应助Sherlock采纳,获得10
3秒前
专注的枫叶完成签到,获得积分10
4秒前
缥缈幻翠完成签到,获得积分10
4秒前
柒月发布了新的文献求助10
4秒前
嘎嘎的鸡神完成签到,获得积分10
4秒前
执着的井发布了新的文献求助10
5秒前
大力哈密瓜完成签到,获得积分10
5秒前
茉莉花茶发布了新的文献求助10
5秒前
小马甲应助PWQ采纳,获得10
5秒前
承蒙大爱完成签到,获得积分10
6秒前
迷路的猎豹完成签到,获得积分10
7秒前
CipherSage应助公冶菲鹰采纳,获得10
7秒前
可爱的函函应助敏感盼秋采纳,获得10
7秒前
loin完成签到,获得积分0
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
何豫完成签到,获得积分10
9秒前
于丽萍完成签到 ,获得积分10
9秒前
9秒前
woaikeyan完成签到,获得积分10
9秒前
10秒前
11秒前
流云明谷完成签到,获得积分10
11秒前
11秒前
谦让的含海应助qqxin采纳,获得10
11秒前
sevenseven完成签到,获得积分10
12秒前
科研通AI6应助迷路的猎豹采纳,获得10
12秒前
努力学习ing完成签到 ,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005