Hierarchical and Dynamic Graph Attention Network for Drug-Disease Association Prediction

计算机科学 机制(生物学) 中心性 图形 节点(物理) 数据挖掘 人工智能 机器学习 理论计算机科学 认识论 结构工程 数学 哲学 组合数学 工程类
作者
Huang Shu-han,Minhui Wang,Xiao Zheng,Jiajia Chen,Chang Tang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2416-2427 被引量:8
标识
DOI:10.1109/jbhi.2024.3363080
摘要

In the realm of biomedicine, the prediction of associations between drugs and diseases holds significant importance. Yet, conventional wet lab experiments often fall short of meeting the stringent demands for prediction accuracy and efficiency. Many prior studies have predominantly focused on drug and disease similarities to predict drug-disease associations, but overlooking the crucial interactions between drugs and diseases that are essential for enhancing prediction accuracy. Hence, in this paper, a resilient and effective model named Hierarchical and Dynamic Graph Attention Network (HDGAT) has been proposed to predict drug-disease associations. Firstly, it establishes a heterogeneous graph by leveraging the interplay of drug and disease similarities and associations. Subsequently, it harnesses the capabilities of graph convolutional networks and bidirectional long short-term memory networks (Bi-LSTM) to aggregate node-level information within the heterogeneous graph comprehensively. Furthermore, it incorporates a hierarchical attention mechanism between convolutional layers and a dynamic attention mechanism between nodes to learn embeddings for drugs and diseases. The hierarchical attention mechanism assigns varying weights to embeddings learned from different convolutional layers, and the dynamic attention mechanism efficiently prioritizes inter-node information by allocating each node with varying rankings of attention coefficients for neighbour nodes. Moreover, it employs residual connections to alleviate the over-smoothing issue in graph convolution operations. The latent drug-disease associations are quantified through the fusion of these embeddings ultimately. By conducting 5-fold cross-validation, HDGAT's performance surpasses the performance of existing state-of-the-art models across various evaluation metrics, which substantiates the exceptional efficacy of HDGAT in predicting drug-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
superxiao应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
tuanheqi应助科研通管家采纳,获得50
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
1秒前
zhangyidian应助科研通管家采纳,获得10
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
QOP应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
丘比特应助科研通管家采纳,获得30
2秒前
微冷潇一应助科研通管家采纳,获得10
2秒前
2秒前
QOP应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
lanlan完成签到 ,获得积分10
2秒前
2秒前
3秒前
qian完成签到,获得积分10
3秒前
蒙塔啦完成签到,获得积分10
4秒前
5秒前
QOP应助面朝大海采纳,获得10
6秒前
7秒前
qq完成签到 ,获得积分10
7秒前
StH完成签到 ,获得积分10
8秒前
科目三应助蒙塔啦采纳,获得10
8秒前
wwy发布了新的文献求助10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174