A new hybrid forecasting method for spare part inventory management using heuristics and bootstrapping

自举(财务) 备品备件 库存管理 启发式 计算机科学 运筹学 运营管理 计量经济学 工程类 经济 操作系统
作者
Tássia Bolotari Affonso,Samuel Vieira Conceição,Leandro Reis Muniz,João Flávio de Freitas Almeida,Juliana Cássia de Lima
出处
期刊:Decision Analytics Journal [Elsevier]
卷期号:: 100415-100415
标识
DOI:10.1016/j.dajour.2024.100415
摘要

Spare parts are particularly challenging to forecast due to their lumpiness and representing a significant part of companies’ expenditures, so even small improvement in new approaches can considerably reduce these items’ total inventory. This paper aims to present a new hybrid forecasting method for spare part inventory management using heuristics and bootstrapping approaches to improve spare parts forecasting in normal use phase in spare parts inventory management. Our study presents an innovative methodology to model autocorrelation in demand to represent data distribution in bootstrapping in alternative to transition probabilities. The results were evaluated and validated through a case study on real data from a large iron ore corporation in Brazil, focusing on demand patterns and their impact on overall costs compared to leading-edge techniques. The mineral sector was selected due to its significant contribution to the emerging Brazilian economy and the lack of research in this field. The results revealed significant improvement in the forecasting total cost reduction up to 40% over leading-edge techniques for erratic and lumpy demand. Results suggest that relaxing autocorrelation in bootstrapping samples could lead to better deal with higher variability in demand sizes in spare parts management compared to parametric methods, as we recommend that this method should be particularly considered when dealing with spare parts with lower intermittence compared to other bootstrapping approaches. The method can be applied in any sector without restrictions, and provides managers with a systematic tool to analyze the trade-off between holding and breakage costs of spare items as well as demand parameters for the mining sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Wjc发布了新的文献求助20
3秒前
LJX完成签到,获得积分10
3秒前
香蕉觅云应助YUQIONG采纳,获得10
4秒前
chuling完成签到,获得积分10
4秒前
sijia完成签到,获得积分10
5秒前
6秒前
hi应助木野狐采纳,获得10
6秒前
hi应助木野狐采纳,获得10
6秒前
充电宝应助keeee采纳,获得10
6秒前
7秒前
7秒前
遇见馅儿饼完成签到 ,获得积分10
9秒前
豆子完成签到,获得积分10
10秒前
嘤嘤怪发布了新的文献求助10
11秒前
11秒前
小刘鸭鸭发布了新的文献求助10
11秒前
今天也要好好学习完成签到,获得积分10
12秒前
小Q啊啾发布了新的文献求助10
12秒前
Chris03Ray发布了新的文献求助10
12秒前
12秒前
欢呼的书南完成签到,获得积分10
13秒前
JackWang618完成签到,获得积分10
13秒前
ChenLan完成签到,获得积分20
13秒前
哈温发布了新的文献求助20
15秒前
MFNM完成签到,获得积分10
15秒前
tenacity完成签到,获得积分10
15秒前
15秒前
18秒前
小姿完成签到 ,获得积分10
18秒前
JackWang618发布了新的文献求助10
18秒前
Dejavue完成签到,获得积分10
19秒前
烟花应助小Q啊啾采纳,获得10
19秒前
20秒前
嘤嘤怪完成签到,获得积分10
20秒前
杏子应助Wjc采纳,获得10
20秒前
小二郎应助Wjc采纳,获得10
20秒前
20秒前
YOGA完成签到,获得积分10
20秒前
图治完成签到,获得积分10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150