亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new hybrid forecasting method for spare part inventory management using heuristics and bootstrapping

自举(财务) 备品备件 库存管理 启发式 计算机科学 运筹学 运营管理 计量经济学 工程类 经济 操作系统
作者
Tássia Bolotari Affonso,Samuel Vieira Conceição,Leandro Reis Muniz,João Flávio de Freitas Almeida,Juliana Cássia de Lima
出处
期刊:Decision Analytics Journal [Elsevier]
卷期号:: 100415-100415
标识
DOI:10.1016/j.dajour.2024.100415
摘要

Spare parts are particularly challenging to forecast due to their lumpiness and representing a significant part of companies’ expenditures, so even small improvement in new approaches can considerably reduce these items’ total inventory. This paper aims to present a new hybrid forecasting method for spare part inventory management using heuristics and bootstrapping approaches to improve spare parts forecasting in normal use phase in spare parts inventory management. Our study presents an innovative methodology to model autocorrelation in demand to represent data distribution in bootstrapping in alternative to transition probabilities. The results were evaluated and validated through a case study on real data from a large iron ore corporation in Brazil, focusing on demand patterns and their impact on overall costs compared to leading-edge techniques. The mineral sector was selected due to its significant contribution to the emerging Brazilian economy and the lack of research in this field. The results revealed significant improvement in the forecasting total cost reduction up to 40% over leading-edge techniques for erratic and lumpy demand. Results suggest that relaxing autocorrelation in bootstrapping samples could lead to better deal with higher variability in demand sizes in spare parts management compared to parametric methods, as we recommend that this method should be particularly considered when dealing with spare parts with lower intermittence compared to other bootstrapping approaches. The method can be applied in any sector without restrictions, and provides managers with a systematic tool to analyze the trade-off between holding and breakage costs of spare items as well as demand parameters for the mining sector.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5t5发布了新的文献求助10
2秒前
8秒前
伍声痕完成签到,获得积分10
10秒前
吴若雨完成签到 ,获得积分10
21秒前
雾海完成签到,获得积分10
25秒前
27秒前
在水一方应助科研通管家采纳,获得10
30秒前
30秒前
ys1111xiao完成签到 ,获得积分10
31秒前
Adc应助David采纳,获得10
31秒前
爆米花应助时空星客采纳,获得10
36秒前
40秒前
50秒前
时空星客发布了新的文献求助10
55秒前
泷生完成签到,获得积分10
59秒前
bkagyin应助圆圆采纳,获得10
1分钟前
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
1分钟前
方yc完成签到,获得积分10
1分钟前
财路通八方完成签到 ,获得积分10
1分钟前
lzl008完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
111112发布了新的文献求助50
1分钟前
5t5完成签到 ,获得积分10
1分钟前
1分钟前
兰周发布了新的文献求助10
1分钟前
Hello应助NKKKKKK采纳,获得10
1分钟前
1分钟前
lzl007完成签到 ,获得积分10
1分钟前
圆圆发布了新的文献求助10
1分钟前
坦率依玉发布了新的文献求助10
1分钟前
1分钟前
我要发核心完成签到 ,获得积分10
1分钟前
兰周完成签到,获得积分10
1分钟前
悦雨完成签到,获得积分10
1分钟前
开朗醉波发布了新的文献求助10
1分钟前
一二完成签到 ,获得积分10
1分钟前
111112完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870591
求助须知:如何正确求助?哪些是违规求助? 6463951
关于积分的说明 15664463
捐赠科研通 4986675
什么是DOI,文献DOI怎么找? 2688931
邀请新用户注册赠送积分活动 1631313
关于科研通互助平台的介绍 1589367