A new hybrid forecasting method for spare part inventory management using heuristics and bootstrapping

自举(财务) 备品备件 库存管理 启发式 计算机科学 运筹学 运营管理 计量经济学 工程类 经济 操作系统
作者
Tássia Bolotari Affonso,Samuel Vieira Conceição,Leandro Reis Muniz,João Flávio de Freitas Almeida,Juliana Cássia de Lima
出处
期刊:Decision Analytics Journal [Elsevier]
卷期号:: 100415-100415
标识
DOI:10.1016/j.dajour.2024.100415
摘要

Spare parts are particularly challenging to forecast due to their lumpiness and representing a significant part of companies’ expenditures, so even small improvement in new approaches can considerably reduce these items’ total inventory. This paper aims to present a new hybrid forecasting method for spare part inventory management using heuristics and bootstrapping approaches to improve spare parts forecasting in normal use phase in spare parts inventory management. Our study presents an innovative methodology to model autocorrelation in demand to represent data distribution in bootstrapping in alternative to transition probabilities. The results were evaluated and validated through a case study on real data from a large iron ore corporation in Brazil, focusing on demand patterns and their impact on overall costs compared to leading-edge techniques. The mineral sector was selected due to its significant contribution to the emerging Brazilian economy and the lack of research in this field. The results revealed significant improvement in the forecasting total cost reduction up to 40% over leading-edge techniques for erratic and lumpy demand. Results suggest that relaxing autocorrelation in bootstrapping samples could lead to better deal with higher variability in demand sizes in spare parts management compared to parametric methods, as we recommend that this method should be particularly considered when dealing with spare parts with lower intermittence compared to other bootstrapping approaches. The method can be applied in any sector without restrictions, and provides managers with a systematic tool to analyze the trade-off between holding and breakage costs of spare items as well as demand parameters for the mining sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助研友_8DopzZ采纳,获得10
1秒前
nihao发布了新的文献求助10
2秒前
3秒前
3秒前
Labman完成签到,获得积分10
3秒前
哈哈完成签到,获得积分10
4秒前
5秒前
阔达的马里奥完成签到 ,获得积分10
5秒前
yiyi完成签到,获得积分10
7秒前
7秒前
大模型应助Taylor采纳,获得10
8秒前
mhl11应助安小野采纳,获得10
8秒前
8秒前
羊羊羊发布了新的文献求助10
8秒前
淡然丹雪发布了新的文献求助10
9秒前
南庭完成签到,获得积分10
9秒前
远航发布了新的文献求助10
10秒前
小不遛w发布了新的文献求助10
10秒前
12秒前
--发布了新的文献求助10
14秒前
16秒前
远航完成签到,获得积分10
18秒前
边港洋完成签到 ,获得积分20
19秒前
19秒前
YY发布了新的文献求助30
19秒前
欧梨欧梨完成签到,获得积分10
19秒前
那个笨笨发布了新的文献求助10
19秒前
双黄应助又夏采纳,获得10
20秒前
Cao发布了新的文献求助10
20秒前
小六完成签到,获得积分10
20秒前
Dagong-xz发布了新的文献求助10
22秒前
124完成签到,获得积分10
22秒前
23秒前
Orange应助Q22采纳,获得10
23秒前
严小赖发布了新的文献求助10
24秒前
SciGPT应助cookie采纳,获得10
25秒前
orixero应助xj采纳,获得10
26秒前
鹿茸与共发布了新的文献求助10
28秒前
28秒前
Akim应助开心妙旋采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
第四次气候变化国家评估报告 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305998
求助须知:如何正确求助?哪些是违规求助? 2939884
关于积分的说明 8494766
捐赠科研通 2614093
什么是DOI,文献DOI怎么找? 1427957
科研通“疑难数据库(出版商)”最低求助积分说明 663212
邀请新用户注册赠送积分活动 648037