Predicting Silicate Glass Geochemistry Using Raman Spectroscopy and Supervised Machine Learning: Partial Least Square Applications to Amorphous Raman Spectra

拉曼光谱 硅酸盐 无定形固体 硅酸盐玻璃 光谱学 分析化学(期刊) 材料科学 拉曼散射 矿物学 化学 光学 物理 结晶学 环境化学 有机化学 量子力学
作者
B. O. LaDouceur,M. C. McCanta,Bhavya Sharma,Grace Sarabia,Natalie Dunn,M. D. Dyar
出处
期刊:Applied Spectroscopy [SAGE]
标识
DOI:10.1177/00037028241234681
摘要

Here, Raman spectroscopy is used to develop a univariate partial least squares (PLS) calibration capable of quantifying geochemistry in synthetic and natural silicate glass samples. The calibration yields eight oxide-specific models that allow predictions of silicon dioxide (SiO 2 ), sodium oxide (Na 2 O), potassium oxide (K 2 O), calcium oxide (CaO), titanium dioxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), ferrous oxide (FeO T ), and magnesium oxide (MgO) (wt%) in glasses spanning a wide range of compositions, while also providing correlation-coefficient matrices that highlight the importance of specific Raman channels in the regression of a particular oxide. The PLS suite is trained on 48 of the 69 total glasses, and tested against 21 validation samples (i.e., held out of training). Trends in root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), and root mean square error of prediction (RMSEP) model accuracy metrics are investigated to uncover the efficacy of utilizing multivariate analysis for such Raman data and are contextualized against recently produced strategies. The technique yields an average root mean of calibration (∼2.4 wt%), cross-validation (∼ 2.9 wt%), prediction (∼ 2.6 wt%), and normalized variance (∼ 28%). Raman band positional shifts are also mapped against underlying chemical variations; with major influences arising primarily as a function of overall oxidation state and silica concentration: via ferric cation (Fe 3+ )/ferrous cation (Fe 2+ ) ratios and SiO 2 (wt%). The algorithm is further validated preliminarily against a separate external set of 11 natural basaltic glasses to unravel the limitations of the synthetic models on natural samples, and to determine the suitability of “universal” Raman-model applications in scenarios where prior chemical contextualization of the target sample is possible. This study represents the first time Raman spectra of amorphous silicates have been paired with PLS, offering a foundation for future improvements utilizing these systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助小火锅采纳,获得10
1秒前
1秒前
呜啦啦啦发布了新的文献求助10
2秒前
2秒前
白白白完成签到 ,获得积分10
3秒前
吃的完成签到,获得积分10
3秒前
3秒前
CodeCraft应助LS-GENIUS采纳,获得10
3秒前
lhl发布了新的文献求助10
3秒前
没有银完成签到,获得积分10
4秒前
4秒前
成是非发布了新的文献求助10
4秒前
火星上的安柏完成签到,获得积分10
4秒前
4秒前
zz发布了新的文献求助10
5秒前
俭朴新之完成签到 ,获得积分10
5秒前
光亮夏兰完成签到,获得积分10
5秒前
十字入口完成签到,获得积分10
6秒前
limin完成签到,获得积分10
6秒前
6秒前
6秒前
Stephen完成签到,获得积分10
7秒前
无花果应助海潮采纳,获得10
7秒前
啾啾完成签到,获得积分10
7秒前
panpan发布了新的文献求助10
8秒前
1459发布了新的文献求助10
8秒前
elfff发布了新的文献求助10
8秒前
9秒前
333333333完成签到,获得积分10
9秒前
领导范儿应助季末默相依采纳,获得10
9秒前
10秒前
咖可乐发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI2S应助小芳儿采纳,获得10
11秒前
深情安青应助Xiaoyan采纳,获得10
12秒前
小鱼儿发布了新的文献求助10
13秒前
猪一宝爱学习完成签到,获得积分10
13秒前
61489486发布了新的文献求助10
13秒前
湘之灵若完成签到 ,获得积分10
13秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158979
求助须知:如何正确求助?哪些是违规求助? 2810153
关于积分的说明 7886308
捐赠科研通 2468968
什么是DOI,文献DOI怎么找? 1314533
科研通“疑难数据库(出版商)”最低求助积分说明 630640
版权声明 602012