Predicting Silicate Glass Geochemistry Using Raman Spectroscopy and Supervised Machine Learning: Partial Least Square Applications to Amorphous Raman Spectra

拉曼光谱 硅酸盐 无定形固体 硅酸盐玻璃 光谱学 分析化学(期刊) 材料科学 拉曼散射 矿物学 化学 光学 物理 结晶学 环境化学 有机化学 量子力学
作者
B. O. LaDouceur,M. C. McCanta,Bhavya Sharma,Grace Sarabia,Natalie Dunn,M. D. Dyar
出处
期刊:Applied Spectroscopy [SAGE Publishing]
标识
DOI:10.1177/00037028241234681
摘要

Here, Raman spectroscopy is used to develop a univariate partial least squares (PLS) calibration capable of quantifying geochemistry in synthetic and natural silicate glass samples. The calibration yields eight oxide-specific models that allow predictions of silicon dioxide (SiO 2 ), sodium oxide (Na 2 O), potassium oxide (K 2 O), calcium oxide (CaO), titanium dioxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), ferrous oxide (FeO T ), and magnesium oxide (MgO) (wt%) in glasses spanning a wide range of compositions, while also providing correlation-coefficient matrices that highlight the importance of specific Raman channels in the regression of a particular oxide. The PLS suite is trained on 48 of the 69 total glasses, and tested against 21 validation samples (i.e., held out of training). Trends in root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), and root mean square error of prediction (RMSEP) model accuracy metrics are investigated to uncover the efficacy of utilizing multivariate analysis for such Raman data and are contextualized against recently produced strategies. The technique yields an average root mean of calibration (∼2.4 wt%), cross-validation (∼ 2.9 wt%), prediction (∼ 2.6 wt%), and normalized variance (∼ 28%). Raman band positional shifts are also mapped against underlying chemical variations; with major influences arising primarily as a function of overall oxidation state and silica concentration: via ferric cation (Fe 3+ )/ferrous cation (Fe 2+ ) ratios and SiO 2 (wt%). The algorithm is further validated preliminarily against a separate external set of 11 natural basaltic glasses to unravel the limitations of the synthetic models on natural samples, and to determine the suitability of “universal” Raman-model applications in scenarios where prior chemical contextualization of the target sample is possible. This study represents the first time Raman spectra of amorphous silicates have been paired with PLS, offering a foundation for future improvements utilizing these systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默幻弦完成签到,获得积分10
刚刚
SICHEN发布了新的文献求助10
1秒前
MQRR发布了新的文献求助10
1秒前
川Q邓紫棋关注了科研通微信公众号
2秒前
4秒前
4秒前
5秒前
SICHEN完成签到,获得积分10
5秒前
6秒前
6秒前
FashionBoy应助雾让空山采纳,获得10
6秒前
7秒前
xu1227发布了新的文献求助10
9秒前
Shushang完成签到,获得积分10
9秒前
LYDDDDD发布了新的文献求助10
10秒前
LamChem发布了新的文献求助10
11秒前
鸿渐于陆发布了新的文献求助10
11秒前
12秒前
超人完成签到 ,获得积分10
12秒前
13秒前
Li完成签到,获得积分10
14秒前
Tian完成签到,获得积分10
14秒前
16秒前
LYDDDDD完成签到,获得积分10
16秒前
贝贝托发布了新的文献求助10
16秒前
hbzyydx46完成签到,获得积分10
17秒前
17秒前
科研猫完成签到,获得积分10
18秒前
qc应助showitt采纳,获得30
18秒前
18秒前
LamChem完成签到,获得积分20
19秒前
Aiven完成签到,获得积分10
19秒前
Ava应助鸿渐于陆采纳,获得10
19秒前
20秒前
晨雾锁阳完成签到 ,获得积分10
20秒前
lic完成签到,获得积分10
21秒前
兔子很颓完成签到,获得积分10
21秒前
虚心的芷烟完成签到,获得积分10
21秒前
清欢发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350613
求助须知:如何正确求助?哪些是违规求助? 4483988
关于积分的说明 13957602
捐赠科研通 4383396
什么是DOI,文献DOI怎么找? 2408306
邀请新用户注册赠送积分活动 1400952
关于科研通互助平台的介绍 1374365