Predicting Silicate Glass Geochemistry Using Raman Spectroscopy and Supervised Machine Learning: Partial Least Square Applications to Amorphous Raman Spectra

拉曼光谱 硅酸盐 无定形固体 硅酸盐玻璃 光谱学 分析化学(期刊) 材料科学 拉曼散射 矿物学 化学 光学 物理 结晶学 环境化学 有机化学 量子力学
作者
B. O. LaDouceur,M. C. McCanta,Bhavya Sharma,Grace Sarabia,Natalie Dunn,M. D. Dyar
出处
期刊:Applied Spectroscopy [SAGE Publishing]
标识
DOI:10.1177/00037028241234681
摘要

Here, Raman spectroscopy is used to develop a univariate partial least squares (PLS) calibration capable of quantifying geochemistry in synthetic and natural silicate glass samples. The calibration yields eight oxide-specific models that allow predictions of silicon dioxide (SiO 2 ), sodium oxide (Na 2 O), potassium oxide (K 2 O), calcium oxide (CaO), titanium dioxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), ferrous oxide (FeO T ), and magnesium oxide (MgO) (wt%) in glasses spanning a wide range of compositions, while also providing correlation-coefficient matrices that highlight the importance of specific Raman channels in the regression of a particular oxide. The PLS suite is trained on 48 of the 69 total glasses, and tested against 21 validation samples (i.e., held out of training). Trends in root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), and root mean square error of prediction (RMSEP) model accuracy metrics are investigated to uncover the efficacy of utilizing multivariate analysis for such Raman data and are contextualized against recently produced strategies. The technique yields an average root mean of calibration (∼2.4 wt%), cross-validation (∼ 2.9 wt%), prediction (∼ 2.6 wt%), and normalized variance (∼ 28%). Raman band positional shifts are also mapped against underlying chemical variations; with major influences arising primarily as a function of overall oxidation state and silica concentration: via ferric cation (Fe 3+ )/ferrous cation (Fe 2+ ) ratios and SiO 2 (wt%). The algorithm is further validated preliminarily against a separate external set of 11 natural basaltic glasses to unravel the limitations of the synthetic models on natural samples, and to determine the suitability of “universal” Raman-model applications in scenarios where prior chemical contextualization of the target sample is possible. This study represents the first time Raman spectra of amorphous silicates have been paired with PLS, offering a foundation for future improvements utilizing these systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歌儿发布了新的文献求助10
刚刚
张婷完成签到,获得积分10
刚刚
高冷的呆呆鱼完成签到,获得积分10
刚刚
刚刚
莫寻双完成签到,获得积分10
刚刚
1秒前
1秒前
王小茹发布了新的文献求助10
2秒前
包容香萱完成签到,获得积分20
2秒前
3秒前
Akim应助KMYSUDA采纳,获得10
4秒前
hd完成签到,获得积分10
4秒前
小马甲应助李铃锐采纳,获得10
5秒前
鱼鱼鱼鱼发布了新的文献求助10
5秒前
研友_VZG7GZ应助辛勤的幼丝采纳,获得10
5秒前
活力盼晴发布了新的文献求助10
5秒前
6秒前
6秒前
机智世平发布了新的文献求助10
6秒前
混的研究生完成签到 ,获得积分10
7秒前
7秒前
魔幻安筠发布了新的文献求助10
7秒前
bro.wang完成签到,获得积分10
7秒前
Moonboss完成签到 ,获得积分10
7秒前
8秒前
852应助chen同学采纳,获得10
8秒前
整齐的惮完成签到 ,获得积分10
8秒前
英姑应助zhaojin采纳,获得10
9秒前
丘比特应助蔡佩翰采纳,获得10
10秒前
xuanx237发布了新的文献求助10
10秒前
LPH01发布了新的文献求助10
10秒前
吴硫完成签到,获得积分10
10秒前
11秒前
佳俊发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
skyy完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181387
求助须知:如何正确求助?哪些是违规求助? 4368405
关于积分的说明 13602955
捐赠科研通 4219520
什么是DOI,文献DOI怎么找? 2314139
邀请新用户注册赠送积分活动 1312834
关于科研通互助平台的介绍 1261466