Load Forecasting and Operation Optimization of Ice-Storage Air Conditioners Based on Improved Deep-Belief Network

空调 调节器 气象学 深信不疑网络 环境科学 计算机科学 运筹学 工业工程 人工智能 工程类 人工神经网络 机械工程 环境工程 地理
作者
Mingxing Guo,Ran Lv,Zexing Miao,Fei Fei,Zhixin Fu,Enqi Wu,Lan Li,Min Wang
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (3): 523-523 被引量:2
标识
DOI:10.3390/pr12030523
摘要

The prediction of cold load in ice-storage air conditioning systems plays a pivotal role in optimizing air conditioning operations, significantly contributing to the equilibrium of regional electricity supply and demand, mitigating power grid stress, and curtailing energy consumption in power grids. Addressing the issues of minimal correlation between input and output data and the suboptimal prediction accuracy inherent in traditional deep-belief neural-network models, this study introduces an enhanced deep-belief neural-network combination prediction model. This model is refined through an advanced genetic algorithm in conjunction with the “Statistical Products and Services Solution” version 25.0 software, aiming to augment the precision of ice-storage air conditioning load predictions. Initially, the input data undergo processing via the “Statistical Products and Services Solution” software, which facilitates the exclusion of samples exhibiting low coupling. Subsequently, the improved genetic algorithm implements adaptive adjustments to surmount the challenge of random weight parameter initialization prevalent in traditional deep-belief networks. Consequently, an optimized deep-belief neural-network load prediction model, predicated on the enhanced genetic algorithm, is established and subjected to training. Ultimately, the model undergoes simulation validation across three critical dimensions: operational performance, prediction evaluation indices, and operating costs of ice-storage air conditioners. The results indicate that, compared to existing methods for predicting the cooling load of ice-storage air conditioning, the proposed model achieves a prediction accuracy of 96.52%. It also shows an average improvement of 14.12% in computational performance and a 14.32% reduction in model energy consumption. The prediction outcomes align with the actual cooling-load variation patterns. Furthermore, the daily operational cost of ice-storage air conditioning, derived from the predicted cooling-load data, has an error margin of only 2.36%. This contributes to the optimization of ice-storage air conditioning operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Akim应助跑快点采纳,获得10
1秒前
白茶发布了新的文献求助10
1秒前
星际发布了新的文献求助10
1秒前
2秒前
你好完成签到,获得积分10
3秒前
今后应助爱听歌的坤坤采纳,获得10
3秒前
carbonhan发布了新的文献求助10
3秒前
liam完成签到,获得积分10
4秒前
Jane完成签到 ,获得积分10
4秒前
5秒前
希望天下0贩的0应助容止采纳,获得10
6秒前
纪智勇发布了新的文献求助10
6秒前
坦率的海豚完成签到,获得积分10
6秒前
xiang完成签到,获得积分10
8秒前
6lllpp发布了新的文献求助10
8秒前
疯癫科研人完成签到,获得积分10
8秒前
8秒前
Dorren发布了新的文献求助10
8秒前
慕青应助Lee采纳,获得10
9秒前
852应助小雪花采纳,获得10
11秒前
无花果应助别摆烂了采纳,获得10
11秒前
思源应助别摆烂了采纳,获得10
11秒前
共享精神应助别摆烂了采纳,获得10
11秒前
缥缈老九完成签到,获得积分10
11秒前
li发布了新的文献求助10
12秒前
龙彦完成签到,获得积分10
12秒前
wellbeing完成签到,获得积分10
12秒前
MO完成签到,获得积分10
12秒前
121311发布了新的文献求助10
12秒前
脑洞疼应助carbonhan采纳,获得10
12秒前
在水一方应助一小盆芦荟采纳,获得10
14秒前
乐乐应助Eternity2025采纳,获得10
15秒前
6lllpp完成签到,获得积分10
17秒前
17秒前
17秒前
星际完成签到,获得积分10
18秒前
CodeCraft应助Pawn采纳,获得10
18秒前
wanci应助33采纳,获得10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215500
求助须知:如何正确求助?哪些是违规求助? 4390616
关于积分的说明 13670382
捐赠科研通 4252539
什么是DOI,文献DOI怎么找? 2333148
邀请新用户注册赠送积分活动 1330741
关于科研通互助平台的介绍 1284568