Load Forecasting and Operation Optimization of Ice-Storage Air Conditioners Based on Improved Deep-Belief Network

空调 调节器 气象学 深信不疑网络 环境科学 计算机科学 运筹学 工业工程 人工智能 工程类 人工神经网络 机械工程 环境工程 地理
作者
Mingxing Guo,Ran Lv,Zexing Miao,Fei Fei,Zhixin Fu,Enqi Wu,Lan Li,Min Wang
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (3): 523-523 被引量:2
标识
DOI:10.3390/pr12030523
摘要

The prediction of cold load in ice-storage air conditioning systems plays a pivotal role in optimizing air conditioning operations, significantly contributing to the equilibrium of regional electricity supply and demand, mitigating power grid stress, and curtailing energy consumption in power grids. Addressing the issues of minimal correlation between input and output data and the suboptimal prediction accuracy inherent in traditional deep-belief neural-network models, this study introduces an enhanced deep-belief neural-network combination prediction model. This model is refined through an advanced genetic algorithm in conjunction with the “Statistical Products and Services Solution” version 25.0 software, aiming to augment the precision of ice-storage air conditioning load predictions. Initially, the input data undergo processing via the “Statistical Products and Services Solution” software, which facilitates the exclusion of samples exhibiting low coupling. Subsequently, the improved genetic algorithm implements adaptive adjustments to surmount the challenge of random weight parameter initialization prevalent in traditional deep-belief networks. Consequently, an optimized deep-belief neural-network load prediction model, predicated on the enhanced genetic algorithm, is established and subjected to training. Ultimately, the model undergoes simulation validation across three critical dimensions: operational performance, prediction evaluation indices, and operating costs of ice-storage air conditioners. The results indicate that, compared to existing methods for predicting the cooling load of ice-storage air conditioning, the proposed model achieves a prediction accuracy of 96.52%. It also shows an average improvement of 14.12% in computational performance and a 14.32% reduction in model energy consumption. The prediction outcomes align with the actual cooling-load variation patterns. Furthermore, the daily operational cost of ice-storage air conditioning, derived from the predicted cooling-load data, has an error margin of only 2.36%. This contributes to the optimization of ice-storage air conditioning operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霜烬染完成签到,获得积分10
1秒前
1秒前
1秒前
我是罗举办完成签到,获得积分10
2秒前
没见热爱完成签到,获得积分10
4秒前
shendu发布了新的文献求助10
4秒前
4秒前
4秒前
qqy完成签到,获得积分10
6秒前
不安的橘子完成签到,获得积分10
6秒前
7秒前
小鱼仔发布了新的文献求助10
7秒前
7秒前
lgq12697应助白兔采纳,获得10
7秒前
xiaomi发布了新的文献求助10
8秒前
小致完成签到,获得积分10
8秒前
不想干活应助高高钢铁侠采纳,获得10
8秒前
浮游应助高高钢铁侠采纳,获得10
8秒前
柔弱飞槐完成签到,获得积分10
8秒前
七页禾发布了新的文献求助30
8秒前
今后应助落雨采纳,获得10
8秒前
8秒前
9秒前
ekko完成签到,获得积分10
10秒前
10秒前
12秒前
JamesPei应助科研通管家采纳,获得20
12秒前
ding应助科研通管家采纳,获得10
12秒前
Ava应助快来吃甜瓜采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得30
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
Chaos发布了新的文献求助10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
我是老大应助shendu采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055