已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Load Forecasting and Operation Optimization of Ice-Storage Air Conditioners Based on Improved Deep-Belief Network

空调 调节器 气象学 深信不疑网络 环境科学 计算机科学 运筹学 工业工程 人工智能 工程类 人工神经网络 机械工程 环境工程 地理
作者
Mingxing Guo,Ran Lv,Zexing Miao,Fei Fei,Zhixin Fu,Enqi Wu,Lan Li,Min Wang
出处
期刊:Processes [MDPI AG]
卷期号:12 (3): 523-523 被引量:2
标识
DOI:10.3390/pr12030523
摘要

The prediction of cold load in ice-storage air conditioning systems plays a pivotal role in optimizing air conditioning operations, significantly contributing to the equilibrium of regional electricity supply and demand, mitigating power grid stress, and curtailing energy consumption in power grids. Addressing the issues of minimal correlation between input and output data and the suboptimal prediction accuracy inherent in traditional deep-belief neural-network models, this study introduces an enhanced deep-belief neural-network combination prediction model. This model is refined through an advanced genetic algorithm in conjunction with the “Statistical Products and Services Solution” version 25.0 software, aiming to augment the precision of ice-storage air conditioning load predictions. Initially, the input data undergo processing via the “Statistical Products and Services Solution” software, which facilitates the exclusion of samples exhibiting low coupling. Subsequently, the improved genetic algorithm implements adaptive adjustments to surmount the challenge of random weight parameter initialization prevalent in traditional deep-belief networks. Consequently, an optimized deep-belief neural-network load prediction model, predicated on the enhanced genetic algorithm, is established and subjected to training. Ultimately, the model undergoes simulation validation across three critical dimensions: operational performance, prediction evaluation indices, and operating costs of ice-storage air conditioners. The results indicate that, compared to existing methods for predicting the cooling load of ice-storage air conditioning, the proposed model achieves a prediction accuracy of 96.52%. It also shows an average improvement of 14.12% in computational performance and a 14.32% reduction in model energy consumption. The prediction outcomes align with the actual cooling-load variation patterns. Furthermore, the daily operational cost of ice-storage air conditioning, derived from the predicted cooling-load data, has an error margin of only 2.36%. This contributes to the optimization of ice-storage air conditioning operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
学术小白发布了新的文献求助10
2秒前
uranus完成签到,获得积分10
4秒前
6秒前
淑儿哥哥完成签到,获得积分10
7秒前
如意的山水完成签到 ,获得积分10
7秒前
学习完成签到 ,获得积分10
8秒前
酢浆草小熊完成签到 ,获得积分10
8秒前
hushan53发布了新的文献求助10
9秒前
科目三应助学术小白采纳,获得10
12秒前
ASHSR完成签到 ,获得积分10
12秒前
111完成签到 ,获得积分10
13秒前
昭荃完成签到 ,获得积分10
14秒前
隐形曼青应助liyun采纳,获得10
16秒前
norberta完成签到,获得积分10
17秒前
klio完成签到 ,获得积分10
17秒前
17秒前
20秒前
12345678发布了新的文献求助10
24秒前
25秒前
26秒前
Thanatos完成签到,获得积分10
27秒前
极限地带完成签到 ,获得积分10
28秒前
123应助湘江雨采纳,获得20
28秒前
Ava应助12345678采纳,获得10
29秒前
FashionBoy应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
31秒前
專注完美近乎苛求完成签到,获得积分10
35秒前
Glacier完成签到 ,获得积分10
35秒前
严汲完成签到,获得积分10
36秒前
czy完成签到 ,获得积分10
37秒前
FashionBoy应助听话的寄灵采纳,获得10
37秒前
啊娴仔发布了新的文献求助10
38秒前
碳酸芙兰完成签到,获得积分10
39秒前
卧镁铀钳完成签到 ,获得积分10
41秒前
43秒前
科研通AI2S应助严汲采纳,获得10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946571
关于积分的说明 8530851
捐赠科研通 2622316
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838