Dynamic predictive maintenance strategy for system remaining useful life prediction via deep learning ensemble method

计算机科学 机器学习 人工智能 集成学习 预测性维护 工程类 可靠性工程
作者
Lubing Wang,Zhengbo Zhu,Xufeng Zhao
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:: 110012-110012 被引量:12
标识
DOI:10.1016/j.ress.2024.110012
摘要

In data-driven prognostics and health management (PHM), most studies focus only on prognostics performance but rarely consider maintenance decision problems. However, simple predictive maintenance decisions are not effective in dealing with the complex operating conditions faced in modern industrial systems. Thus, we propose a complete data-driven dynamic predictive maintenance strategy for system remaining useful life (RUL) prediction via deep learning ensemble method to solve this problem. This deep learning ensemble method is composed of a convolutional neural network (CNN) and a bidirectional long short-term memory network (Bi-LSTM), which aims to effectively predict the system RUL. Then, we consider a dynamic predictive maintenance strategy with uncertain system mission cycles based on the RUL predicted by deep learning ensemble method. Meanwhile, this dynamic predictive maintenance strategy includes order, stock, and maintenance decisions. In addition, the number of missions performed by the system and the reliability of the last performed mission are presented based on the mission cycle and the predicted RUL. Finally, experimental results from the NASA turbofan engine dataset C-MAPSS show the favorable performance of the proposed dynamic predictive maintenance strategy compared to the existing maintenance strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yn_发布了新的文献求助10
1秒前
2秒前
杰尼龟完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
7秒前
土豆侠完成签到 ,获得积分10
7秒前
7秒前
请叫我风吹麦浪应助ZYN采纳,获得10
7秒前
务实元风发布了新的文献求助10
8秒前
8秒前
Jiao发布了新的文献求助10
8秒前
dhyzf1214完成签到,获得积分10
8秒前
orixero应助机智幻嫣采纳,获得10
10秒前
11秒前
12秒前
13秒前
李思超完成签到 ,获得积分10
13秒前
allton发布了新的文献求助10
15秒前
15秒前
Chris发布了新的文献求助10
16秒前
nipangle完成签到,获得积分20
16秒前
17秒前
呆萌沛蓝发布了新的文献求助30
17秒前
小二郎应助十九采纳,获得10
17秒前
18秒前
hvivi6发布了新的文献求助10
19秒前
顾暖发布了新的文献求助10
20秒前
hyx完成签到,获得积分10
20秒前
汉堡包应助无误采纳,获得10
21秒前
zz发布了新的文献求助30
22秒前
香蕉觅云应助耀阳采纳,获得10
23秒前
淡然依凝发布了新的文献求助10
24秒前
Chris完成签到,获得积分10
24秒前
机灵的怀绿完成签到,获得积分10
24秒前
25秒前
25秒前
yxzha完成签到 ,获得积分10
25秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075