Revealing the strengthening mechanism of Cu–Sn composites joint fabricated via in-situ reaction for power electronic packaging

原位 材料科学 复合材料 机制(生物学) 电子包装 接头(建筑物) 功率(物理) 结构工程 化学 工程类 物理 有机化学 量子力学
作者
Qiman Xu,Yudong Cao,Baishan Chen,Jian Zhou,Feng Xue
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:895: 146252-146252 被引量:2
标识
DOI:10.1016/j.msea.2024.146252
摘要

The growing demand for advanced materials for high-temperature connections has seen a substantial increase in response to the greater integration and enhanced power of electronic devices, especially in the electric vehicle sector. Our investigation presents an innovative solder alloy comprising copper-tin (Cu–Sn) for high-power electronic devices, achieved through the cross-accumulative rolling (CAR) technique with transient liquid phase (TLP) pathway. This results in the successful creation of Cu–Sn composite joints, reinforced with high melting point intermetallic compounds (IMCs), Cu6Sn5 and Cu3Sn. Our findings reveal the formation of a unique heterogeneous lamellar structure at the interface of Cu micro-particles (Cu MPs) and Sn during the stacked layer growth process. These distinct microstructures are primarily governed by diffusion-assisted nucleation mechanisms. Notably, the composite joint displays an elevated-temperature tensile strength of 43.01 MPa, with the spatial distribution of Cu MPs and the size of IMCs significantly influencing the mechanical strength of the joint. The observed strain hardening in Cu MPs offsets the strength reduction resulting from the formation of microcracks in the IMCs, leading to a notably enhanced joint strength. Theoretical analysis and examination of the fracture morphology confirm that the uniform distribution of Cu MPs, resulting in an alternating arrangement of soft and hard phases, is a key factor contributing to the superior strength of the joint. These results provide a valuable strategy for creating IMCs that are suitable for applications in the field of power semiconductor device packaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
赘婿应助默默洋葱采纳,获得10
3秒前
5秒前
6秒前
星星发布了新的文献求助80
7秒前
7秒前
yanna完成签到,获得积分10
10秒前
11秒前
Janus完成签到,获得积分10
11秒前
徐芳菲完成签到 ,获得积分10
12秒前
13秒前
wangYJ驳回了慕青应助
13秒前
等乙天发布了新的文献求助10
13秒前
14秒前
wlp鹏完成签到,获得积分10
15秒前
Rain发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
18秒前
大个应助Rain采纳,获得10
19秒前
21秒前
肖先生发布了新的文献求助10
21秒前
Lyj123完成签到,获得积分10
22秒前
dffwlj发布了新的文献求助10
22秒前
24秒前
领导范儿应助秃头叶青青采纳,获得10
24秒前
诸岩发布了新的文献求助10
25秒前
浩然发布了新的文献求助10
26秒前
26秒前
栗子应助owoow采纳,获得10
28秒前
科研通AI2S应助owoow采纳,获得10
28秒前
28秒前
29秒前
栗子应助与落采纳,获得10
29秒前
ira发布了新的文献求助10
31秒前
平常的伊关注了科研通微信公众号
31秒前
31秒前
所所应助123123采纳,获得10
32秒前
SciGPT应助林夕采纳,获得10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954