A food quality detection method based on electronic nose technology

电子鼻 质量(理念) 计算机科学 模式识别(心理学) 计算机视觉 人工智能 物理 量子力学
作者
Mingyang Wang,Yinsheng Chen,Deyun Chen,Xinchun Tian,Wenjie Zhao,Yunbo Shi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056004-056004 被引量:2
标识
DOI:10.1088/1361-6501/ad29e4
摘要

Abstract Food quality detection is of great importance for human health and industrial production. Currently, the common detection methods are difficult to achieve the need for fast, accurate, and non-destructive detection. In this work, an electronic nose (E-nose) detection method based on the combination of convolutional neural network combined with wavelet scattering network (CNN-WSN) and improved seahorse optimizes kernel extreme learning machine (ISHO-KELM) is proposed for identifying the quality level of a variety of food products. In the feature extraction part, the abstract features of CNN are fused with the scattering features of WSN, and the obtained CNN-WSN fusion features can characterize the original information of the food quality effectively. In the classifier design and decision-making section, chaotic mapping is used to initialize the population in the seahorse optimisation algorithm (SHO), avoiding the problem that SHO may fall into local optimal solutions. The kernel parameters and regularisation coefficients of the KELM model were then optimized by improving the locomotion, predation, and reproduction behaviors of the hippocampal populations, which solved the problem of the difficult selection of the key parameters in the model, and thus improved the accuracy and generalization of the overall model. To validate the effectiveness of the proposed food quality detection model, the E-nose system was first built and milk quality data were collected independently, and then tested on two publicly available food quality datasets as well as a self-collected milk quality dataset, respectively. The experimental results show that the food quality detection method proposed in this work has good quality assessment effect on different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔡秋景完成签到,获得积分10
刚刚
刚刚
大个应助积极的新柔采纳,获得10
1秒前
Snoopy发布了新的文献求助10
1秒前
1秒前
miao发布了新的文献求助30
1秒前
烂漫半梅完成签到,获得积分10
2秒前
dd完成签到,获得积分10
2秒前
2秒前
邓博完成签到,获得积分10
2秒前
3秒前
蔡秋景发布了新的文献求助10
3秒前
喜悦静枫发布了新的文献求助10
4秒前
英姑应助haoliu采纳,获得30
5秒前
5秒前
6秒前
爱吃饭的黄哥完成签到,获得积分10
6秒前
7秒前
搜集达人应助LYj采纳,获得10
8秒前
Hello应助去糖少冰采纳,获得10
9秒前
大大发布了新的文献求助10
10秒前
九千七发布了新的文献求助10
10秒前
chenhui发布了新的文献求助10
10秒前
12秒前
12秒前
Owen应助阿九采纳,获得10
13秒前
高高的酸奶完成签到,获得积分10
13秒前
14秒前
HHHH完成签到,获得积分10
15秒前
17秒前
小小完成签到,获得积分10
18秒前
Febrine0502完成签到,获得积分10
18秒前
18秒前
早上好发布了新的文献求助10
19秒前
19秒前
19秒前
蘇q发布了新的文献求助10
19秒前
21秒前
22秒前
Lili发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148139
求助须知:如何正确求助?哪些是违规求助? 2799228
关于积分的说明 7833916
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307237
科研通“疑难数据库(出版商)”最低求助积分说明 628119
版权声明 601655