A food quality detection method based on electronic nose technology

电子鼻 质量(理念) 计算机科学 模式识别(心理学) 计算机视觉 人工智能 物理 量子力学
作者
Mingyang Wang,Yinsheng Chen,Deyun Chen,Xinchun Tian,Wenjie Zhao,Yunbo Shi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056004-056004 被引量:5
标识
DOI:10.1088/1361-6501/ad29e4
摘要

Abstract Food quality detection is of great importance for human health and industrial production. Currently, the common detection methods are difficult to achieve the need for fast, accurate, and non-destructive detection. In this work, an electronic nose (E-nose) detection method based on the combination of convolutional neural network combined with wavelet scattering network (CNN-WSN) and improved seahorse optimizes kernel extreme learning machine (ISHO-KELM) is proposed for identifying the quality level of a variety of food products. In the feature extraction part, the abstract features of CNN are fused with the scattering features of WSN, and the obtained CNN-WSN fusion features can characterize the original information of the food quality effectively. In the classifier design and decision-making section, chaotic mapping is used to initialize the population in the seahorse optimisation algorithm (SHO), avoiding the problem that SHO may fall into local optimal solutions. The kernel parameters and regularisation coefficients of the KELM model were then optimized by improving the locomotion, predation, and reproduction behaviors of the hippocampal populations, which solved the problem of the difficult selection of the key parameters in the model, and thus improved the accuracy and generalization of the overall model. To validate the effectiveness of the proposed food quality detection model, the E-nose system was first built and milk quality data were collected independently, and then tested on two publicly available food quality datasets as well as a self-collected milk quality dataset, respectively. The experimental results show that the food quality detection method proposed in this work has good quality assessment effect on different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
伶俐乐菱应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
shadow完成签到,获得积分10
3秒前
sen123完成签到,获得积分10
4秒前
123完成签到,获得积分20
5秒前
6秒前
NATURECATCHER完成签到,获得积分10
6秒前
温暖霸完成签到,获得积分10
6秒前
以筱完成签到,获得积分10
7秒前
NexusExplorer应助崔崔采纳,获得10
7秒前
CipherSage应助Passskd采纳,获得10
11秒前
12秒前
子睿完成签到,获得积分10
12秒前
背后雨柏完成签到 ,获得积分10
12秒前
13秒前
nanana发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
五月初夏完成签到,获得积分10
14秒前
hannah发布了新的文献求助10
17秒前
songvv完成签到,获得积分20
18秒前
哟哟哟完成签到,获得积分10
19秒前
19秒前
wanglejia完成签到,获得积分10
19秒前
从容的雪碧完成签到,获得积分10
19秒前
20秒前
Ac完成签到,获得积分10
20秒前
谦让的莆完成签到 ,获得积分10
20秒前
胡图图完成签到,获得积分0
20秒前
崔崔完成签到,获得积分10
21秒前
敖江风云完成签到,获得积分10
21秒前
浮生若梦完成签到 ,获得积分10
23秒前
Passskd发布了新的文献求助10
23秒前
杀出个黎明举报求助违规成功
23秒前
哈基米德举报求助违规成功
23秒前
千跃举报求助违规成功
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022