Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water

电容去离子 电极 材料科学 海水淡化 海水 吸附 化学工程 分析化学(期刊) 化学 色谱法 电化学 冶金 地质学 物理化学 生物化学 海洋学 有机化学 工程类
作者
Xinyuan Zhang,Mengdie Pang,Yanan Wei,Fei Liu,Haimin Zhang,Hongjian Zhou
出处
期刊:Water Research [Elsevier BV]
卷期号:251: 121147-121147 被引量:19
标识
DOI:10.1016/j.watres.2024.121147
摘要

Flow electrode capacitive deionization (FCDI) is a highly promising desalination technique known for its exceptional electrosorption capacity, making it suitable for efficient salt separation in high salinity water. However, the unsatisfactory charge transfer process between the flow electrode and current collector severely curtails the salt separation and enrichment performance of the FCDI device. To address this issue, three-dimensional titanium mesh (3D-TM) was proposed as a novel current collector for FCDI device, which significantly amplifies the charge transfer area and exhibits excellent salt separation performance. The 3D-TM current collector promotes the electron transfer, charge percolation, and ion migration processes through the electroconvection generated by the turbulence effect on the flow electrode. In the specific case of the 20-mesh 3D-TM, which is composed of 12 stacking layers of titanium mesh, the remarkable average salt removal rate and charge efficiency were achieved 5.06 μmol cm−2 min−1 and 92.9 % under an appropriate applied voltage of 2.0 V, respectively. Dramatically, the desalination performance maintained above 76.4 % over 100 desalination cycles at 2.0 V, demonstrating the exceptional cyclic stability of the 3D-TM FCDI cell. In the seawater desalination, the 3D-TM FCDI cell exhibited an impressive salt removal efficiency of 97.5 % (from 34.2 g L−1 to 0.84 g L−1) for 1 L East China seawater at 2.0 V for 24 h. For lithium-ion enrichment, the FCDI continuous desalting system achieved an astonishing concentration of 17.3 g L−1 for Li+ ions enrichment from an initial concentration of 1.30 g L−1, obtaining the average salt treating rate of 23.6 g m−2 h−1 and charge efficiency of 80.0 %. Moreover, the lithium-sodium ions and lithium-magnesium ions enrichments were both conducted, yielding an enriched concentration of 10.4 g L−1 and 7.30 g L−1 for Li+ ions, respectively. These findings highlight the enormous potential of FCDI technology in industrial engineering applications, further establishing it as a highly viable solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
GingerF应助超级的晓啸采纳,获得60
2秒前
林炎完成签到,获得积分10
2秒前
安详可燕发布了新的文献求助10
2秒前
zzt关闭了zzt文献求助
2秒前
十亿少女的梦完成签到,获得积分10
2秒前
cyz完成签到,获得积分10
3秒前
3秒前
qiyixuan发布了新的文献求助10
4秒前
小宝完成签到,获得积分10
4秒前
5秒前
小蘑菇应助chen采纳,获得10
5秒前
Adler发布了新的文献求助10
5秒前
seata发布了新的文献求助10
5秒前
ZhiyunXu2012完成签到 ,获得积分10
6秒前
Zyer完成签到,获得积分10
6秒前
7秒前
8秒前
shisui发布了新的文献求助20
9秒前
忧虑的电话完成签到,获得积分10
9秒前
月亮完成签到,获得积分20
10秒前
张今天也要做科研呀完成签到,获得积分10
11秒前
GH完成签到,获得积分10
11秒前
11秒前
崔win完成签到,获得积分10
12秒前
lin发布了新的文献求助10
12秒前
艾迪富富完成签到,获得积分10
12秒前
羔羊发布了新的文献求助10
13秒前
科研顺利完成签到,获得积分10
13秒前
李燊发布了新的文献求助10
13秒前
清爽幻竹发布了新的文献求助10
14秒前
打打应助传统的松鼠采纳,获得10
14秒前
vv发布了新的文献求助10
14秒前
彭于晏应助回乐采纳,获得10
15秒前
JamesPei应助DQ采纳,获得10
16秒前
落后的嚓茶完成签到 ,获得积分10
16秒前
Hana完成签到,获得积分10
16秒前
骑驴找马发布了新的文献求助10
17秒前
17秒前
徐徐完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139