Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water

电容去离子 电极 材料科学 海水淡化 海水 吸附 化学工程 分析化学(期刊) 化学 色谱法 电化学 冶金 地质学 有机化学 物理化学 工程类 海洋学 生物化学
作者
Xinyuan Zhang,Mengdie Pang,Yanan Wei,Fei Liu,Haimin Zhang,Hongjian Zhou
出处
期刊:Water Research [Elsevier]
卷期号:251: 121147-121147 被引量:6
标识
DOI:10.1016/j.watres.2024.121147
摘要

Flow electrode capacitive deionization (FCDI) is a highly promising desalination technique known for its exceptional electrosorption capacity, making it suitable for efficient salt separation in high salinity water. However, the unsatisfactory charge transfer process between the flow electrode and current collector severely curtails the salt separation and enrichment performance of the FCDI device. To address this issue, three-dimensional titanium mesh (3D-TM) was proposed as a novel current collector for FCDI device, which significantly amplifies the charge transfer area and exhibits excellent salt separation performance. The 3D-TM current collector promotes the electron transfer, charge percolation, and ion migration processes through the electroconvection generated by the turbulence effect on the flow electrode. In the specific case of the 20-mesh 3D-TM, which is composed of 12 stacking layers of titanium mesh, the remarkable average salt removal rate and charge efficiency were achieved 5.06 μmol cm−2 min−1 and 92.9 % under an appropriate applied voltage of 2.0 V, respectively. Dramatically, the desalination performance maintained above 76.4 % over 100 desalination cycles at 2.0 V, demonstrating the exceptional cyclic stability of the 3D-TM FCDI cell. In the seawater desalination, the 3D-TM FCDI cell exhibited an impressive salt removal efficiency of 97.5 % (from 34.2 g L−1 to 0.84 g L−1) for 1 L East China seawater at 2.0 V for 24 h. For lithium-ion enrichment, the FCDI continuous desalting system achieved an astonishing concentration of 17.3 g L−1 for Li+ ions enrichment from an initial concentration of 1.30 g L−1, obtaining the average salt treating rate of 23.6 g m−2 h−1 and charge efficiency of 80.0 %. Moreover, the lithium-sodium ions and lithium-magnesium ions enrichments were both conducted, yielding an enriched concentration of 10.4 g L−1 and 7.30 g L−1 for Li+ ions, respectively. These findings highlight the enormous potential of FCDI technology in industrial engineering applications, further establishing it as a highly viable solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶一二完成签到,获得积分10
2秒前
2秒前
2秒前
DocZhao完成签到 ,获得积分10
3秒前
apt完成签到,获得积分10
3秒前
3秒前
Three完成签到,获得积分10
4秒前
如果多年后完成签到 ,获得积分10
4秒前
SYLH应助solobang采纳,获得10
5秒前
SYLH应助solobang采纳,获得10
5秒前
灰色与青完成签到,获得积分10
5秒前
852应助幸福胡萝卜采纳,获得10
5秒前
虞无声应助年华采纳,获得10
5秒前
6秒前
香菜发布了新的文献求助10
7秒前
hf发布了新的文献求助10
7秒前
9秒前
爱听歌长颈鹿完成签到,获得积分20
9秒前
852应助抓恐龙采纳,获得10
9秒前
10秒前
小小鱼完成签到,获得积分10
10秒前
10秒前
单薄的小鸽子完成签到,获得积分10
11秒前
12秒前
charon完成签到,获得积分20
12秒前
bkagyin应助fff采纳,获得10
12秒前
小宇发布了新的文献求助10
13秒前
13秒前
1111发布了新的文献求助10
13秒前
单薄凌蝶完成签到,获得积分10
14秒前
14秒前
哄哄完成签到,获得积分10
14秒前
求知若渴完成签到,获得积分10
14秒前
ysf完成签到,获得积分10
15秒前
如意航空完成签到,获得积分10
16秒前
洛杉矶的奥斯卡完成签到,获得积分10
16秒前
yxy完成签到,获得积分10
16秒前
16秒前
Anoxia完成签到,获得积分10
17秒前
wangwenzhe完成签到,获得积分20
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678