Service Function Chain Embedding Meets Machine Learning: Deep Reinforcement Learning Approach

计算机科学 强化学习 分布式计算 云计算 启发式 网络服务 软件定义的网络 资源配置 趋同(经济学) 虚拟网络 虚拟化 计算机网络 人工智能 经济 经济增长 操作系统
作者
Yicen Liu,Junning Zhang
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3465-3481 被引量:12
标识
DOI:10.1109/tnsm.2024.3353808
摘要

With the emerge of the network function virtualization (NFV) and software-defined network (SDN), the SDN/NFV-enabled network has been recognized as one of the most promising technologies to efficiently achieve resource allocation for network service. By introducing the SDN/NFV technology, each service can be represented by a service function chain (SFC), which can deploy the virtualized network functions (VNFs) and chain them with corresponding flows allocation. Considering the dynamic and complex nature of mobile terminals in cloud networks, how to efficiently embedding SFCs remains as a challenging problem. However, the traditional methods (e.g., exact, heuristic, meta-heuristic, and game, etc.) are subjected to the complexity of cloud network scenarios with dynamic network states, high-speed computational requirements, and enormous service requests. Recent studies have shown that deep reinforcement learning (DRL) is a promising way to deal with the limitations of the traditional methods. However, DRL agent training easily suffers from the problem of slow convergence performance. In order to overcome this narrow, in this paper, we design a novel DRL framework based on the enhanced deep deterministic policy gradient (E-DDPG) for the efficient SFC embedding in the dynamic and complex cloud network scenarios. Simulation results validate the high efficiency of the proposed DRL framework as it not only converges faster than currently baseline algorithms, but also reduces the end-to-end delay down to at least 28.3% compared to the benchmarks. All our proposed algorithms and code are available at https://github.com/ jn-z/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
April完成签到,获得积分10
刚刚
qmk完成签到,获得积分10
刚刚
刚刚
1秒前
梦比优斯发布了新的文献求助10
1秒前
1秒前
翟威发布了新的文献求助10
1秒前
木四点发布了新的文献求助10
3秒前
nenshen完成签到,获得积分10
4秒前
5秒前
万能图书馆应助levicho采纳,获得10
6秒前
6秒前
123发布了新的文献求助10
7秒前
9秒前
CodeCraft应助梦比优斯采纳,获得10
9秒前
zhang发布了新的文献求助10
10秒前
鞥枊发布了新的文献求助10
12秒前
ding应助Justtry采纳,获得10
14秒前
酷酷问雁完成签到,获得积分10
14秒前
14秒前
cxj完成签到,获得积分20
15秒前
贪玩的笑阳完成签到,获得积分10
17秒前
在水一方应助chouchou采纳,获得10
18秒前
levicho发布了新的文献求助10
18秒前
桐桐应助氼氼采纳,获得10
19秒前
木木完成签到,获得积分10
19秒前
YYT完成签到,获得积分10
19秒前
20秒前
20秒前
圈圈完成签到,获得积分10
20秒前
Hello应助追寻的丹烟采纳,获得10
20秒前
22秒前
23秒前
23秒前
23秒前
bkagyin应助FYhan采纳,获得10
23秒前
科目三应助hhhh采纳,获得10
24秒前
张慕蕊完成签到,获得积分10
26秒前
Justtry发布了新的文献求助10
27秒前
xh发布了新的文献求助10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258475
求助须知:如何正确求助?哪些是违规求助? 2900346
关于积分的说明 8309788
捐赠科研通 2569594
什么是DOI,文献DOI怎么找? 1395794
科研通“疑难数据库(出版商)”最低求助积分说明 653293
邀请新用户注册赠送积分活动 631201