🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Advances and Challenges in Meta-Learning: A Technical Review

计算机科学 人工智能 机器学习 数据科学
作者
Anna Vettoruzzo,Mohamed-Rafik Bouguelia,Joaquin Vanschoren,Thorsteinn Rögnvaldsson,K. C. Santosh
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (7): 4763-4779 被引量:27
标识
DOI:10.1109/tpami.2024.3357847
摘要

Meta-learning empowers learning systems with the ability to acquire knowledge from multiple tasks, enabling faster adaptation and generalization to new tasks. This review provides a comprehensive technical overview of meta-learning, emphasizing its importance in real-world applications where data may be scarce or expensive to obtain. The paper covers the state-of-the-art meta-learning approaches and explores the relationship between meta-learning and multi-task learning, transfer learning, domain adaptation and generalization, selfsupervised learning, personalized federated learning, and continual learning. By highlighting the synergies between these topics and the field of meta-learning, the paper demonstrates how advancements in one area can benefit the field as a whole, while avoiding unnecessary duplication of efforts. Additionally, the paper delves into advanced meta-learning topics such as learning from complex multi-modal task distributions, unsupervised metalearning, learning to efficiently adapt to data distribution shifts, and continual meta-learning. Lastly, the paper highlights open problems and challenges for future research in the field. By synthesizing the latest research developments, this paper provides a thorough understanding of meta-learning and its potential impact on various machine learning applications. We believe that this technical overview will contribute to the advancement of meta-learning and its practical implications in addressing realworld problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abc123完成签到,获得积分10
2秒前
叽里呱啦完成签到 ,获得积分10
2秒前
困困困完成签到 ,获得积分10
2秒前
5秒前
美羊羊完成签到 ,获得积分10
6秒前
加载文献别卡了完成签到,获得积分10
8秒前
jason发布了新的文献求助10
8秒前
Nancy完成签到,获得积分10
9秒前
大蒜味酸奶钊完成签到 ,获得积分10
10秒前
柯柯完成签到 ,获得积分10
10秒前
泽锦臻完成签到 ,获得积分10
10秒前
11秒前
淡淡菠萝完成签到 ,获得积分10
14秒前
Nancy发布了新的文献求助10
14秒前
ziyu完成签到 ,获得积分10
21秒前
mmm完成签到,获得积分10
22秒前
yy爱科研完成签到,获得积分10
22秒前
廖天佑完成签到,获得积分0
23秒前
半斤完成签到 ,获得积分10
24秒前
忧虑的花卷完成签到,获得积分10
25秒前
26秒前
zixian完成签到,获得积分10
27秒前
31秒前
chenjiaye完成签到 ,获得积分10
31秒前
LXZ完成签到,获得积分10
31秒前
cocobear完成签到 ,获得积分10
32秒前
酷波er应助zixian采纳,获得10
35秒前
无语的断缘完成签到,获得积分10
37秒前
可靠的寒风完成签到,获得积分10
39秒前
武广敏完成签到,获得积分10
39秒前
youfangjia关注了科研通微信公众号
40秒前
Xzmmmm完成签到,获得积分10
43秒前
Lucas应助欧拉采纳,获得10
45秒前
可取完成签到,获得积分10
46秒前
独钓寒江雪完成签到 ,获得积分10
46秒前
50秒前
moral完成签到 ,获得积分10
52秒前
zxt完成签到,获得积分10
54秒前
lm番茄发布了新的文献求助10
54秒前
兰是一个信仰完成签到,获得积分10
56秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600555
求助须知:如何正确求助?哪些是违规求助? 3169378
关于积分的说明 9561054
捐赠科研通 2875822
什么是DOI,文献DOI怎么找? 1579043
邀请新用户注册赠送积分活动 742361
科研通“疑难数据库(出版商)”最低求助积分说明 725244