Microfluidic Generation of Diverse Lipid Nanoparticle Libraries

图书馆学 计算生物学 纳米技术 计算机科学 生物 材料科学
作者
Andrew R. Hanna,Sarah J. Shepherd,David Issadore,Michael J. Mitchell
出处
期刊:Nanomedicine 卷期号:19 (6): 455-457 被引量:1
标识
DOI:10.2217/nnm-2023-0345
摘要

NanomedicineVol. 19, No. 6 EditorialMicrofluidic generation of diverse lipid nanoparticle librariesAndrew R Hanna, Sarah J Shepherd, David Issadore & Michael J MitchellAndrew R Hanna https://orcid.org/0009-0009-3220-4378Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA, Sarah J ShepherdDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA, David Issadore*Author for correspondence: E-mail Address: issadore@seas.upenn.eduDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA & Michael J Mitchell **Author for correspondence: E-mail Address: mjmitch@seas.upenn.eduhttps://orcid.org/0000-0002-3628-2244Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USAPenn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USAPublished Online:19 Jan 2024https://doi.org/10.2217/nnm-2023-0345AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: drug deliveryhigh-throughput screeninglipid nanoparticlesmicrofluidicstissue targetingReferences1. Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6(12), 1078–1094 (2021).Medline CASGoogle Scholar2. Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15(4), 313–320 (2020).Medline CASGoogle Scholar3. Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20(3), 1578–1589 (2020).Medline CASGoogle Scholar4. Han X, Zhang H, Butowska K et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12(1), 7233 (2021).Medline CASGoogle Scholar5. Kulkarni JA, Darjuan MM, Mercer JE et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano. 12(5), 4787–4795 (2018).Medline CASGoogle Scholar6. Valencia PM, Farokhzad OC, Karnik R, Langer R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7(10), 623–629 (2012).Medline CASGoogle Scholar7. Shepherd SJ, Issadore D, Mitchell MJ. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 274, 120826 (2021).Medline CASGoogle Scholar8. Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM. Chaotic mixer for microchannels. Science 295(5555), 647–651 (2002).Medline CASGoogle Scholar9. Shepherd SJ, Han X, Mukalel AJ et al. Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines. Proc. Natl Acad. Sci. 120(33), e2303567120 (2023).Medline CASGoogle Scholar10. Gindy ME, DiFelice K, Kumar V et al. Mechanism of macromolecular structure evolution in self-assembled lipid nanoparticles for siRNA delivery. Langmuir 30(16), 4613–4622 (2014).Medline CASGoogle Scholar11. O'Brien Laramy MN, Costa AP, Cebrero YM et al. Process robustness in lipid nanoparticle production: a comparison of microfluidic and turbulent jet mixing. Mol. Pharm. 20(8), 4285–4296 (2023).MedlineGoogle Scholar12. Dahlman JE, Kauffman KJ, Xing Y et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. 114(8), 2060–2065 (2017).Medline CASGoogle Scholar13. Leung AKK, Hafez IM, Baoukina S et al. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J. Phys. Chem. C. 116(34), 18440–18450 (2012).CASGoogle Scholar14. Reker D, Rybakova Y, Kirtane AR et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16(6), 725–733 (2021).Medline CASGoogle Scholar15. Kumar R, Le N, Tan Z, Brown ME, Jiang S, Reineke TM. Efficient polymer-mediated delivery of gene-editing ribonucleoprotein payloads through combinatorial design, parallelized experimentation, and machine learning. ACS Nano 14(12), 17626–17639 (2020).Medline CASGoogle Scholar16. Sunscreen - LNP Formulation Screening. Unchained Labs (2023). Available from: www.unchainedlabs.com/sunscreen/ (Accessed 13 November 2023).Google Scholar17. Götz J, Jackl MK, Jindakun C et al. High-throughput synthesis provides data for predicting molecular properties and reaction success. Sci. Adv. 9(43), eadj2314 (2023).Medline CASGoogle Scholar18. Rhym LH, Manan RS, Koller A, Stephanie G, Anderson DG. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7(7), 901–910 (2023).Medline CASGoogle Scholar19. Kimura N, Maeki M, Sato Y et al. Development of a microfluidic-based post-treatment process for size-controlled lipid nanoparticles and application to siRNA delivery. ACS Appl. Mater. Interfaces 12(30), 34011–34020 (2020).Medline CASGoogle Scholar20. Cruz-Samperio R, Hicks CL, Scott A et al. Modular bioorthogonal lipid nanoparticle modification platforms for cardiac homing. J. Am. Chem. Soc. 145(41), 22659–22670 (2023).Medline CASGoogle ScholarFiguresReferencesRelatedDetails Vol. 19, No. 6 STAY CONNECTED Metrics Downloaded 266 times History Received 24 November 2023 Accepted 6 December 2023 Published online 19 January 2024 Published in print March 2024 Information© 2024 Expert Publishing Medicine Ltd trading as Taylor & FrancisKeywordsdrug deliveryhigh-throughput screeninglipid nanoparticlesmicrofluidicstissue targetingFinancial disclosureMJ Mitchell acknowledges financial support from the NIH, grant number DP2TR002776. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Writing disclosureNo writing assistance was utilized in the production of this manuscript.Competing interests disclosureThe authors have no competing interests or relevant affiliations with any organization or entity with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刺猬发布了新的文献求助10
刚刚
梦影完成签到,获得积分10
2秒前
2秒前
5秒前
6秒前
闵min完成签到 ,获得积分10
6秒前
啾啾zZ完成签到 ,获得积分10
8秒前
8秒前
雪山飞鹰发布了新的文献求助30
9秒前
斯文败类应助鲜于夜白采纳,获得10
10秒前
小青发布了新的文献求助10
10秒前
11秒前
11秒前
大模型应助高贵的海安采纳,获得10
11秒前
樊珩发布了新的文献求助10
12秒前
12秒前
13秒前
MPJ.发布了新的文献求助10
14秒前
14秒前
15秒前
ykgoose发布了新的文献求助10
15秒前
zm发布了新的文献求助10
17秒前
王建平完成签到 ,获得积分10
17秒前
18秒前
18秒前
么么叽完成签到,获得积分10
19秒前
Miracle完成签到,获得积分10
19秒前
ke完成签到,获得积分10
20秒前
点点完成签到 ,获得积分10
23秒前
23秒前
苻醉山发布了新的文献求助10
24秒前
星辰大海应助MPJ.采纳,获得10
24秒前
24秒前
27秒前
27秒前
27秒前
27秒前
标致的数据线完成签到 ,获得积分10
29秒前
从容芮应助科研通管家采纳,获得10
30秒前
小马甲应助科研通管家采纳,获得10
30秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129756
求助须知:如何正确求助?哪些是违规求助? 2780520
关于积分的说明 7748718
捐赠科研通 2435880
什么是DOI,文献DOI怎么找? 1294326
科研通“疑难数据库(出版商)”最低求助积分说明 623670
版权声明 600570