Regulate defects and energy levels for perovskite solar cells by co-modification strategy

钙钛矿(结构) 材料科学 表面改性 能量转换效率 四氢呋喃 表面能 化学工程 图层(电子) 纳米技术 光电子学 复合材料 化学 有机化学 溶剂 工程类
作者
Yapeng Sun,Jiankai Zhang,Bo Yu,Shengwei Shi,Huangzhong Yu
出处
期刊:Nano Energy [Elsevier]
卷期号:121: 109245-109245 被引量:19
标识
DOI:10.1016/j.nanoen.2023.109245
摘要

The under-coordinated bonds and deep-level defects on the perovskite surface always act as non-radiative recombination centers and lead to energy loss. The usual surface modification efficiency is limited because of the diversity of surface terminals and defects. Here, a co-modification strategy is proposed for more-thorough modification by reconstructing and post-modifying perovskite surface defects. In detail, the tetrahydrofuran (THF) is firstly implemented to remove the organic component and expose the perovskite surface with uniform Pb terminals and defects, and then the 4-Methylbenzyl Mercaptan (MBM) is used to form strong R-S-Pb bonding with them, which achieves the increase and decrease of under-coordinated Pb donor defects. Correspondingly, the surface energy level of perovskite is observed a consistent change with defects. THF/MBM co-modification changes the perovskite surface energy level from n-type toward p-type, which enhances the holes' transport efficiency. As a result, the best power conversion efficiency (PCE) increases from 22.23% of the control device to 24.17% of the device with THF/MBM co-modification. Notably, a full-coverage and strong-bonding protective layer is formed by THF/MBM co-modification, which facilitates excellent device stability (Retains 93.7%, after 3360 h in N2). This strategy shows great potential in high-performance PSCs by reconstructing defects and energy level of perovskite surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
毛豆爸爸发布了新的文献求助10
2秒前
坦率的丹烟完成签到 ,获得积分10
2秒前
风趣的梦露完成签到 ,获得积分10
2秒前
认真的南珍完成签到 ,获得积分20
3秒前
4秒前
5秒前
林森发布了新的文献求助10
7秒前
7秒前
那里有颗星星完成签到,获得积分10
7秒前
丙队长完成签到,获得积分10
8秒前
酷炫蚂蚁完成签到,获得积分20
9秒前
9秒前
科研通AI5应助叶子采纳,获得10
9秒前
感激不尽完成签到,获得积分10
9秒前
wuyudelan完成签到,获得积分10
10秒前
zstyry9998完成签到,获得积分10
12秒前
RH发布了新的文献求助10
12秒前
冷傲迎梦发布了新的文献求助10
12秒前
14秒前
weiv完成签到,获得积分10
16秒前
Teslwang完成签到,获得积分10
16秒前
16秒前
16秒前
zhangzhen发布了新的文献求助10
16秒前
英姑应助彬彬采纳,获得10
17秒前
传奇3应助maomao采纳,获得10
19秒前
稀罕你发布了新的文献求助10
20秒前
研友_VZG7GZ应助毛豆爸爸采纳,获得10
20秒前
naonao完成签到,获得积分20
20秒前
摆烂的实验室打工人完成签到,获得积分10
20秒前
Jenny发布了新的文献求助50
22秒前
23秒前
hehe完成签到,获得积分20
23秒前
naonao发布了新的文献求助10
24秒前
Glufo完成签到,获得积分10
24秒前
25秒前
qqqqqq发布了新的文献求助10
26秒前
忘羡222发布了新的文献求助30
26秒前
紫菜发布了新的文献求助10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824