多硫化物
阴极
材料科学
催化作用
电解质
硫黄
纳米技术
锂(药物)
化学工程
锂硫电池
化学
电极
有机化学
物理化学
医学
工程类
冶金
内分泌学
作者
Ran Zhu,Zhenyang Zhao,Rui Yan,Min Wu,Weiqion Zheng,Mao Wang,Chong Cheng,Shuang Li,Changsheng Zhao
标识
DOI:10.1002/adfm.202314593
摘要
Abstract Accelerating the conversion of soluble lithium polysulfides (LiPSs) to solid Li 2 S 2 /Li 2 S through single‐atom cathodes has emerged as a promising strategy for realizing high‐performance lithium–sulfur batteries. However, rationally optimizing the conversion effects and spatial capture abilities of LiPSs intermediates on the atomic catalytic sites is extremely required but still faces enormous challenges. Here, inspired by the delicate structure of sieve tubes in plants, Fe single‐atom cathode (channel‐Fe SAC ) equipped with long‐range ordered channels and localized capture‐catalysis microenvironments towards efficient LiPSs conversion is reported on designing. Benefiting from the individual and stable catalytic areal for localized capture and migration inhibition abilities on LiPSs and fully confined triple‐phase boundaries between atomic catalytic centers, conductive carbon, and electrolytes, the channel‐Fe SAC can effectively convert polysulfides, thus eliminating the shuttle effects and generation of inactive LiPSs. It is also elucidated that the channel‐Fe SAC exhibits superior migration inhibition of polysulfide and accelerates Li 2 S deposition/conversion kinetics compared with bowl‐Fe SAC and flat‐Fe SAC . The outstanding areal capacity and cycling stability under high sulfur loading and low electrolyte/sulfur ratio verify that the channel‐Fe SAC holds great potential as cathodes for high‐performance cathodes. This work offers vital insights into the essential roles of bioinspired fully confined channels and catalytic microenvironments in polysulfide catalysis for efficient lithium–sulfur batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI