A Hybrid Trajectory Prediction Framework for Automated Vehicles With Attention Mechanisms

弹道 计算机科学 透视图(图形) 人工智能 数据挖掘 物理 天文
作者
Mingqiang Wang,Lei Zhang,Jun Chen,Zhiqiang Zhang,Zhenpo Wang,Dongpu Cao
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:10 (3): 6178-6194 被引量:1
标识
DOI:10.1109/tte.2023.3346668
摘要

The driving safety of automated vehicles is largely dependent on accurately predicting the motions of surrounding vehicles. However, the existing approaches ignore the impact of the ego vehicle's future behaviors on the surrounding vehicles and lack model explainability for the prediction results. To tackle this issue, a hybrid trajectory prediction framework based on Long Short-Term Memory (LSTM) encoding is proposed. It introduces a reactive social convolution structure to model the planned trajectory of the ego vehicle with the historical trajectories of the surrounding vehicles to reduce uncertainty in potential trajectories. Furthermore, a spatio-temporal attention mechanism is presented to quantitatively describe the contributions of historical trajectories and interactions among the surrounding vehicles to the prediction results by appropriate weights setting. Finally, the proposed scheme is comprehensively evaluated based on the NGSIM and HighD datasets. The results demonstrate that the proposed approach can elucidate the prediction process from a spatio-temporal perspective and outperforms other state-of-the-art methods under different scenarios. The Root-Mean-Square errors in the NGSIM and HighD datasets are reduced to less than 3.65 m and 2.36 m over a time horizon of 5 s , respectively. The qualitative analysis on the reliability and reactivity are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌的凌文完成签到,获得积分10
刚刚
小宇仔发布了新的文献求助10
1秒前
zjh完成签到,获得积分10
1秒前
HAO发布了新的文献求助10
1秒前
小情绪应助靓丽的采白采纳,获得10
1秒前
lyz完成签到,获得积分10
1秒前
fjh应助靓丽的采白采纳,获得30
1秒前
李健应助失眠的访彤采纳,获得10
2秒前
2秒前
3秒前
zho关闭了zho文献求助
3秒前
linliqing完成签到,获得积分10
3秒前
Akim应助晓雯采纳,获得10
3秒前
方小上发布了新的文献求助10
3秒前
十米发布了新的文献求助10
3秒前
张津硕完成签到,获得积分10
4秒前
李健的粉丝团团长应助NaCl采纳,获得10
4秒前
冰西瓜最棒_完成签到,获得积分10
4秒前
dyf应助56789采纳,获得10
6秒前
7秒前
qise应助昏睡的洋葱采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
刘茂帅完成签到,获得积分10
9秒前
泠珞发布了新的文献求助10
10秒前
123456完成签到 ,获得积分10
10秒前
11秒前
善学以致用应助xuzhiwei采纳,获得10
11秒前
开朗冬萱完成签到 ,获得积分10
13秒前
昏睡的蟠桃应助wszl采纳,获得50
13秒前
英俊的铭应助XXX采纳,获得50
14秒前
llllhh完成签到,获得积分10
14秒前
只想发财完成签到,获得积分10
14秒前
时间到了LY关注了科研通微信公众号
15秒前
无私诗桃发布了新的文献求助10
16秒前
16秒前
玉玉应助扶摇直上采纳,获得20
16秒前
16秒前
16秒前
左辄完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958909
求助须知:如何正确求助?哪些是违规求助? 3505121
关于积分的说明 11122699
捐赠科研通 3236612
什么是DOI,文献DOI怎么找? 1788911
邀请新用户注册赠送积分活动 871431
科研通“疑难数据库(出版商)”最低求助积分说明 802794