清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning for Network Traffic Prediction: An Overview

计算机科学 人工智能 循环神经网络 机器学习 预处理器 数据预处理 深度学习 人工神经网络 网络流量模拟 交通分类 领域(数学) 交通生成模型 数据建模 数据挖掘 网络流量控制 服务质量 计算机网络 网络数据包 数据库 数学 纯数学
作者
M. X. Fu,Pan Wang,Zixuan Wang,Zeyi Li
标识
DOI:10.1109/dasc/picom/cbdcom/cy59711.2023.10361459
摘要

Accurately predicting metrics such as bandwidth utilization in future networks can assist service providers in predicting network congestion, allowing for proactive network expansion, adjustments, and optimization. To adapt to the ever-changing network environment and requirements, methods for network traffic prediction have evolved from traditional statistical models to gradually incorporate Machine Learning (ML), Deep Learning (DL), and similar approaches. Given that real-world network traffic patterns are often nonlinear and have a long memory, DL algorithms like Recurrent Neural Networks (RNN) and Long Short-Term Memory networks (LSTM) are better suited for handling time series data. These algorithms excel in capturing the nonlinearity, long-term dependencies, and correlations among data points. In this paper, we outline an overview framework for Traffic Prediction (TP), encompassing problem definition, data collection, preprocessing, model selection, and model evaluation. We delve into the latest DL techniques in the field of network traffic prediction, highlighting the utilization of RNN, LSTM, and related models. Furthermore, we engage in a discussion of open research questions and provide insights into potential future directions for development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的傲珊完成签到,获得积分10
26秒前
英俊的铭应助科研通管家采纳,获得10
58秒前
LPPQBB应助科研通管家采纳,获得48
58秒前
pew完成签到,获得积分10
1分钟前
科研通AI2S应助111采纳,获得10
1分钟前
香香蛋堡完成签到 ,获得积分10
2分钟前
李健的粉丝团团长应助xun采纳,获得10
2分钟前
2分钟前
nojego完成签到,获得积分10
2分钟前
xun发布了新的文献求助10
2分钟前
2分钟前
3分钟前
忧郁的火车完成签到,获得积分10
3分钟前
kyokyoro完成签到,获得积分10
3分钟前
柴yuki完成签到 ,获得积分10
3分钟前
ysc121完成签到 ,获得积分10
4分钟前
treat4869完成签到 ,获得积分10
4分钟前
拉长的芷烟完成签到 ,获得积分10
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
毛毛完成签到,获得积分10
4分钟前
4分钟前
xun完成签到,获得积分20
5分钟前
李木禾完成签到 ,获得积分10
6分钟前
zzzy完成签到 ,获得积分10
6分钟前
貔貅完成签到 ,获得积分10
6分钟前
独孤家驹完成签到 ,获得积分10
6分钟前
6分钟前
woxinyouyou完成签到,获得积分0
6分钟前
榴下晨光完成签到 ,获得积分10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
7分钟前
Ttimer完成签到,获得积分10
7分钟前
郑雅柔完成签到 ,获得积分0
7分钟前
7分钟前
7分钟前
8分钟前
清欢完成签到 ,获得积分10
8分钟前
zxcvvbb1001完成签到 ,获得积分10
8分钟前
8分钟前
Jack80完成签到,获得积分0
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303351
求助须知:如何正确求助?哪些是违规求助? 4450186
关于积分的说明 13849164
捐赠科研通 4336823
什么是DOI,文献DOI怎么找? 2381130
邀请新用户注册赠送积分活动 1376131
关于科研通互助平台的介绍 1342738