Different Hf/Zr-based UHTCs modified C/C composites were fabricated via the reactive melt infiltration (RMI) adopting HfSi2, ZrSi2, and HfSi2-ZrSi2 hybrid alloys with different molar ratios (3:1, 1:1, 1:3). The microstructural evolution of the composites, variation of mechanical properties, and ablation performance of the composites in the absence of in-situ coating were studied. The C/HfC-ZrC-SiC composites were all divided into the exterior region with more UHTC phases and the interior region with more SiC and silicides, and the UHTC-rich region enlarged with the HfSi2 content increased in the RMI alloy. The flexural strengths of C/HfC-ZrC-SiC were enhanced to 238.37±20.42 Mpa and 237.26±17.57 Mpa when adopting HfSi2-ZrSi2 alloys with molar ratios of 1:1 and 1:3. As the HfSi2 content in the RMI alloy increased, the oxide layer became compact with sintering degree increased, enhancing the ablation resistance of the composites and reducing the mass ablation rate.