Multimodal Engagement Recognition from Image traits using Deep Learning Techniques

计算机科学 卷积神经网络 人工智能 凝视 会话(web分析) 面部识别系统 眼动 机器学习 模式 在线模型 计算机视觉 特征提取 社会科学 统计 数学 社会学 万维网
作者
Ajitha Sukumaran,M. Arun
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/access.2024.3353053
摘要

Learner engagement is a significant factor determining the success of implementing an intelligent educational network. Currently the use of Massive Open Online Courses has increased because of the flexibility offered by such online learning systems. The COVID period has encouraged practitioners to continue to engage in new ways of online and hybrid teaching. However, monitoring student engagement and keeping the right level of interaction in an online classroom is challenging for teachers. In this paper we propose an engagement recognition model by combining the image traits obtained from a camera, such as facial emotions, gaze tracking with head pose estimation and eye blinking rate. In the first step, a face recognition model was implemented. The next stage involved training the facial emotion recognition model using deep learning convolutional neural network with the datasets FER 2013.The classified emotions were assigned weights corresponding to the academic affective states. Subsequently, by using the Dlib’s face detector and shape predicting algorithm, the gaze direction with head pose estimation, eyes blinking rate and status of the eye (closed or open) were identified. Combining all these modalities obtained from the image traits, we propose an engagement recognition system. The experimental results of the proposed system were validated by the quiz score obtained at the end of each session. This model can be used for real time video processing of the student’s affective state. The teacher can obtain a detailed analytics of engagement statics on a spreadsheet at the end of the session thus facilitating the necessary follow-up actions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
繁荣的匪发布了新的文献求助20
刚刚
三重积分咖啡完成签到 ,获得积分10
刚刚
刚刚
认真乐双发布了新的文献求助10
刚刚
完美世界应助葛根采纳,获得10
1秒前
1秒前
直率铃铛完成签到,获得积分10
1秒前
希光光发布了新的文献求助10
2秒前
南吕廿八发布了新的文献求助10
3秒前
Lili完成签到,获得积分10
3秒前
cheng发布了新的文献求助10
3秒前
dtfly发布了新的文献求助10
3秒前
彭于晏应助科研小白采纳,获得10
4秒前
小蜜峰儿完成签到,获得积分10
4秒前
5秒前
5秒前
orixero应助nimonimo采纳,获得10
7秒前
美好乐松应助一一采纳,获得10
7秒前
聪明邪欢发布了新的文献求助10
7秒前
可靠幼旋完成签到,获得积分10
7秒前
7秒前
拥抱爱莉完成签到,获得积分10
7秒前
8秒前
8秒前
迅速芸遥完成签到,获得积分20
9秒前
9秒前
dtfly完成签到,获得积分10
9秒前
10秒前
SciGPT应助善良的金鱼采纳,获得10
10秒前
Feny发布了新的文献求助10
11秒前
饱满的棒棒糖完成签到 ,获得积分10
12秒前
monica01010完成签到,获得积分10
12秒前
12秒前
13秒前
吴凡发布了新的文献求助10
13秒前
AAA111122发布了新的文献求助10
13秒前
dery发布了新的文献求助10
15秒前
英俊的铭应助iufan采纳,获得10
15秒前
NexusExplorer应助专一的书雪采纳,获得10
15秒前
华仔应助mmol采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134421
求助须知:如何正确求助?哪些是违规求助? 2785363
关于积分的说明 7771655
捐赠科研通 2440968
什么是DOI,文献DOI怎么找? 1297647
科研通“疑难数据库(出版商)”最低求助积分说明 625023
版权声明 600812