One-dimensional deep convolutional autoencoder active infrared thermography: Enhanced visualization of internal defects in FRP composites

热成像 纤维增强塑料 自编码 可视化 无损检测 材料科学 偏最小二乘回归 红外线的 计算机科学 主成分分析 人工智能 复合材料 光学 深度学习 机器学习 物理 量子力学
作者
Yubin Zhang,Changhang Xu,Pengqian Liu,Jing Xie,Yage Han,Rui Liu,L. Chen
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:272: 111216-111216 被引量:5
标识
DOI:10.1016/j.compositesb.2024.111216
摘要

Fiber-reinforced polymer (FRP) composites have been widely applied in different industrial fields, thereby necessitating the employment of non-destructive testing (NDT) methods to ensure structural integrity and safety. Active infrared thermography (AIRT) is a fast and cost-efficient NDT technique for inspecting FRP composites. However, this method is easily affected by factors such as inhomogeneous heating, leading to a low level of visualization of defects. To address this issue, this study proposes a novel method called one-dimensional deep convolutional autoencoder active infrared thermography (1D-DCAE-AIRT) to enhance the visualization of internal defects in FRP composites. This method first preprocesses the thermal image sequence acquired by AIRT inspections. Subsequently, high-level thermal features at the pixel level are extracted from the aforementioned preprocessed thermal image sequence using a designed one-dimensional deep convolutional autoencoder (1D-DCAE) model. Finally, the extracted high-level thermal features are employed to generate enhanced visualization results that exhibit improved defect visibility. The results of three kinds of AIRT (eddy current pulsed thermography, flash thermography, and vibrothermography) experiments on FRP composite specimens with artificially introduced defects show that 1D-DCAE-AIRT can effectively enhance the visualization of internal defects. The enhancement effect is better than the conventional techniques of fast Fourier transform (FFT), principal component analysis (PCA), independent component analysis (ICA), and partial least-squares regression (PLSR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
orixero应助冬天雪山茶采纳,获得10
4秒前
6秒前
开心之王发布了新的文献求助10
7秒前
午见千山应助nnnn采纳,获得10
7秒前
Akim应助xv采纳,获得100
7秒前
干净溪流完成签到,获得积分20
8秒前
思源应助万嘉俊采纳,获得10
9秒前
9秒前
Xumm发布了新的文献求助10
10秒前
10秒前
rosalieshi应助复杂的绮兰采纳,获得30
10秒前
小二发布了新的文献求助10
11秒前
情怀应助开心之王采纳,获得10
12秒前
12秒前
12秒前
Akim应助wujingshuai采纳,获得10
13秒前
13秒前
章半仙发布了新的文献求助10
14秒前
14秒前
mf2002mf发布了新的文献求助10
16秒前
Orange应助嗯哼采纳,获得10
17秒前
weilanhaian发布了新的文献求助10
17秒前
音悦台发布了新的文献求助10
17秒前
闪耀的芝士蛋挞完成签到,获得积分10
18秒前
nnnn完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
落后的铭完成签到,获得积分20
23秒前
xss完成签到 ,获得积分10
23秒前
buno应助欢喜怀绿采纳,获得10
24秒前
25秒前
顾矜应助1477采纳,获得10
25秒前
任性曼梅发布了新的文献求助10
25秒前
25秒前
diandian1108发布了新的文献求助10
26秒前
万嘉俊发布了新的文献求助10
27秒前
liu发布了新的文献求助30
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241300
求助须知:如何正确求助?哪些是违规求助? 2885813
关于积分的说明 8240715
捐赠科研通 2554345
什么是DOI,文献DOI怎么找? 1382498
科研通“疑难数据库(出版商)”最低求助积分说明 649586
邀请新用户注册赠送积分活动 625248