Sensing Gas Mixtures by Analyzing the Spatiotemporal Optical Responses of Liquid Crystals Using 3D Convolutional Neural Networks

分析物 卷积神经网络 生物系统 材料科学 亮度 液晶 纳米技术 计算机科学 化学 光电子学 人工智能 色谱法 光学 物理 生物
作者
Nanqi Bao,Shengli Jiang,Alexander Smith,James J. Schauer,Manos Mavrikakis,Reid C. Van Lehn,Ví­ctor M. Zavala,Nicholas L. Abbott
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:7 (9): 2545-2555 被引量:17
标识
DOI:10.1021/acssensors.2c00362
摘要

We report how analysis of the spatial and temporal optical responses of liquid crystal (LC) films to targeted gases, when performed using a machine learning methodology, can advance the sensing of gas mixtures and provide important insights into the physical processes that underlie the sensor response. We develop the methodology using O3 and Cl2 mixtures (representative of an important class of analytes) and LCs supported on metal perchlorate-decorated surfaces as a model system. Although O3 and Cl2 both diffuse through LC films and undergo redox reactions with the supporting metal perchlorate surfaces to generate similar initial and final optical states of the LCs, we show that a three-dimensional convolutional neural network can extract feature information that is encoded in the spatiotemporal color patterns of the LCs to detect the presence of both O3 and Cl2 species in mixtures and to quantify their concentrations. Our analysis reveals that O3 detection is driven by the transition time over which the brightness of the LC changes, while Cl2 detection is driven by color fluctuations that develop late in the optical response of the LC. We also show that we can detect the presence of Cl2 even when the concentration of O3 is orders of magnitude greater than the Cl2 concentration. The proposed methodology is generalizable to a wide range of analytes, reactive surfaces, and LCs and has the potential to advance the design of portable LC monitoring devices (e.g., wearable devices) for analyzing gas mixtures using spatiotemporal color fluctuations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助嘻嘻哈哈采纳,获得10
1秒前
情怀应助Ache_Xu采纳,获得10
2秒前
Dxxxjx发布了新的文献求助10
2秒前
2秒前
2秒前
化工渣渣发布了新的文献求助10
2秒前
研友_VZG7GZ应助Rrha采纳,获得10
3秒前
五更夜发布了新的文献求助10
3秒前
浮游应助尊敬的灰狼采纳,获得10
3秒前
美女发布了新的文献求助10
3秒前
vinci完成签到,获得积分10
4秒前
4秒前
6秒前
英姑应助qiu采纳,获得10
7秒前
陈泽显发布了新的文献求助10
7秒前
susuna1230发布了新的文献求助10
8秒前
xl8530完成签到,获得积分10
8秒前
斯文败类应助陶醉的蜜蜂采纳,获得10
9秒前
9秒前
匹诺曹发布了新的文献求助10
10秒前
10秒前
ringo发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
852应助喜悦兔子采纳,获得10
13秒前
111完成签到,获得积分20
14秒前
SciGPT应助陈陈采纳,获得10
14秒前
14秒前
14秒前
聪慧黑米发布了新的文献求助10
15秒前
当晚星散落完成签到,获得积分10
15秒前
16秒前
16秒前
wang发布了新的文献求助10
16秒前
16秒前
qiu完成签到,获得积分20
17秒前
sc95完成签到,获得积分10
17秒前
一二发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5171369
求助须知:如何正确求助?哪些是违规求助? 4361812
关于积分的说明 13581435
捐赠科研通 4209417
什么是DOI,文献DOI怎么找? 2308751
邀请新用户注册赠送积分活动 1308047
关于科研通互助平台的介绍 1254938