Sensing Gas Mixtures by Analyzing the Spatiotemporal Optical Responses of Liquid Crystals Using 3D Convolutional Neural Networks

分析物 卷积神经网络 生物系统 材料科学 亮度 液晶 纳米技术 计算机科学 化学 光电子学 人工智能 色谱法 光学 物理 生物
作者
Nanqi Bao,Shengli Jiang,Alexander Smith,James J. Schauer,Manos Mavrikakis,Reid C. Van Lehn,Ví­ctor M. Zavala,Nicholas L. Abbott
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:7 (9): 2545-2555 被引量:17
标识
DOI:10.1021/acssensors.2c00362
摘要

We report how analysis of the spatial and temporal optical responses of liquid crystal (LC) films to targeted gases, when performed using a machine learning methodology, can advance the sensing of gas mixtures and provide important insights into the physical processes that underlie the sensor response. We develop the methodology using O3 and Cl2 mixtures (representative of an important class of analytes) and LCs supported on metal perchlorate-decorated surfaces as a model system. Although O3 and Cl2 both diffuse through LC films and undergo redox reactions with the supporting metal perchlorate surfaces to generate similar initial and final optical states of the LCs, we show that a three-dimensional convolutional neural network can extract feature information that is encoded in the spatiotemporal color patterns of the LCs to detect the presence of both O3 and Cl2 species in mixtures and to quantify their concentrations. Our analysis reveals that O3 detection is driven by the transition time over which the brightness of the LC changes, while Cl2 detection is driven by color fluctuations that develop late in the optical response of the LC. We also show that we can detect the presence of Cl2 even when the concentration of O3 is orders of magnitude greater than the Cl2 concentration. The proposed methodology is generalizable to a wide range of analytes, reactive surfaces, and LCs and has the potential to advance the design of portable LC monitoring devices (e.g., wearable devices) for analyzing gas mixtures using spatiotemporal color fluctuations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真玉米完成签到,获得积分10
刚刚
yangyang发布了新的文献求助10
1秒前
shendengya完成签到 ,获得积分10
1秒前
1秒前
张铭哲发布了新的文献求助10
2秒前
2秒前
发粪涂墙完成签到,获得积分10
2秒前
小青年儿完成签到 ,获得积分10
3秒前
朝qwer完成签到,获得积分10
3秒前
健忘的灵凡完成签到,获得积分10
3秒前
aa完成签到,获得积分10
3秒前
3秒前
3秒前
宋丽娟完成签到,获得积分10
4秒前
科目三应助小李采纳,获得10
4秒前
斯文败类应助浩然采纳,获得10
4秒前
zec200030完成签到,获得积分10
4秒前
4秒前
5秒前
幽默的溪灵完成签到,获得积分0
5秒前
lhx完成签到,获得积分20
5秒前
蒋宁完成签到,获得积分10
6秒前
大喇叭啦啦啦完成签到,获得积分10
6秒前
6秒前
hzhniubility完成签到,获得积分10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
芳菲依旧应助科研通管家采纳,获得30
7秒前
海聪天宇完成签到,获得积分10
7秒前
7秒前
小鲨鱼完成签到,获得积分10
7秒前
NEUROVASCULAR发布了新的文献求助10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得20
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
立刻有应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386