亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sensing Gas Mixtures by Analyzing the Spatiotemporal Optical Responses of Liquid Crystals Using 3D Convolutional Neural Networks

分析物 卷积神经网络 生物系统 材料科学 亮度 液晶 纳米技术 计算机科学 化学 光电子学 人工智能 色谱法 光学 物理 生物
作者
Nanqi Bao,Shengli Jiang,Alexander Smith,James J. Schauer,Manos Mavrikakis,Reid C. Van Lehn,Ví­ctor M. Zavala,Nicholas L. Abbott
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:7 (9): 2545-2555 被引量:17
标识
DOI:10.1021/acssensors.2c00362
摘要

We report how analysis of the spatial and temporal optical responses of liquid crystal (LC) films to targeted gases, when performed using a machine learning methodology, can advance the sensing of gas mixtures and provide important insights into the physical processes that underlie the sensor response. We develop the methodology using O3 and Cl2 mixtures (representative of an important class of analytes) and LCs supported on metal perchlorate-decorated surfaces as a model system. Although O3 and Cl2 both diffuse through LC films and undergo redox reactions with the supporting metal perchlorate surfaces to generate similar initial and final optical states of the LCs, we show that a three-dimensional convolutional neural network can extract feature information that is encoded in the spatiotemporal color patterns of the LCs to detect the presence of both O3 and Cl2 species in mixtures and to quantify their concentrations. Our analysis reveals that O3 detection is driven by the transition time over which the brightness of the LC changes, while Cl2 detection is driven by color fluctuations that develop late in the optical response of the LC. We also show that we can detect the presence of Cl2 even when the concentration of O3 is orders of magnitude greater than the Cl2 concentration. The proposed methodology is generalizable to a wide range of analytes, reactive surfaces, and LCs and has the potential to advance the design of portable LC monitoring devices (e.g., wearable devices) for analyzing gas mixtures using spatiotemporal color fluctuations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Nature应助qingcahng采纳,获得30
刚刚
无辜士萧发布了新的文献求助10
6秒前
14秒前
寻道图强应助ceeray23采纳,获得200
17秒前
19秒前
刘哈哈完成签到 ,获得积分10
19秒前
WU完成签到 ,获得积分10
24秒前
刻苦的小土豆完成签到 ,获得积分10
30秒前
30秒前
31秒前
33秒前
wq完成签到,获得积分10
34秒前
wq发布了新的文献求助10
37秒前
40秒前
42秒前
丘比特应助勤奋灵凡采纳,获得10
44秒前
ceeray23发布了新的文献求助20
46秒前
49秒前
123完成签到 ,获得积分10
51秒前
53秒前
量子星尘发布了新的文献求助10
55秒前
57秒前
勤奋灵凡发布了新的文献求助10
1分钟前
xiezizai完成签到,获得积分10
1分钟前
YuxinChen完成签到 ,获得积分10
1分钟前
1分钟前
瘦瘦以亦发布了新的文献求助10
1分钟前
瘦瘦以亦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Qinghen发布了新的文献求助10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助倒逆之蝶采纳,获得10
2分钟前
2分钟前
热心一江完成签到,获得积分20
2分钟前
年少丶完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664136
求助须知:如何正确求助?哪些是违规求助? 4858127
关于积分的说明 15107210
捐赠科研通 4822602
什么是DOI,文献DOI怎么找? 2581577
邀请新用户注册赠送积分活动 1535787
关于科研通互助平台的介绍 1494017