Prediction of uranium adsorption capacity on biochar by machine learning methods

生物炭 吸附 环境科学 材料科学 化学 冶金 有机化学 热解
作者
Tianxing Da,Hui-Kang Ren,Wen-ke He,Siyi Gong,Tao Chen
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:10 (5): 108449-108449 被引量:54
标识
DOI:10.1016/j.jece.2022.108449
摘要

The effective separation of uranium is a challenge for the treatment of radioactive wastewater. In this study, four machine learning (ML) methods (linear regression, support vector regression, random forest, and multilayer perceptron artificial neural network) were applied to predict the adsorption capacity of uranium on biochar. The relative importance of physical and chemical properties of biochar was also analyzed. Independent adsorption experiments were conducted with four biochar to verify the ML model. After training and verification, the model obtained with two hidden layers perceptron artificial neural network performs best by comparing the values of R 2 and RMSE. The structural properties of biochar, such as specific surface area, are more important for the adsorption capacity of uranium than the chemical composition. ML modeling provides a new strategy for the design and tailoring of biochar for uranium adsorption, which can significantly reduce the experimental workload and the safety risks associated with radioactivity. • Machine learning methods were successfully applied to predict uranium adsorption on biochar. • The model obtained by multilayer perceptron with two hidden layers shows the best performance. • Machine learning models were verified by the independent adsorption experiments. • The physical properties of biochar are more important than the chemical properties for uranium adsorption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨发布了新的文献求助10
3秒前
4秒前
我超爱cs发布了新的文献求助10
5秒前
星辰大海应助哈哈哈采纳,获得10
6秒前
打打应助xftx采纳,获得10
6秒前
yyy发布了新的文献求助10
6秒前
传奇3应助哈哈哈采纳,获得10
6秒前
吃饱饱完成签到,获得积分10
7秒前
852应助继续加油吧采纳,获得10
7秒前
7秒前
汉堡包应助ht采纳,获得10
8秒前
小宋应助高兴阑悦采纳,获得50
8秒前
bkagyin应助自觉柠檬采纳,获得10
8秒前
9秒前
12秒前
小蘑菇应助尉小雷采纳,获得10
12秒前
阳佟雨南发布了新的文献求助10
13秒前
14秒前
聪慧的草丛完成签到,获得积分10
14秒前
14秒前
小风车完成签到 ,获得积分10
15秒前
16秒前
17秒前
17秒前
sd发布了新的文献求助10
18秒前
0206发布了新的文献求助10
19秒前
巡音幻夜发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
清一壶发布了新的文献求助10
21秒前
Asen锅发布了新的文献求助10
21秒前
囚徒发布了新的文献求助10
22秒前
布布爱吃炸鸡完成签到,获得积分10
23秒前
自觉柠檬发布了新的文献求助10
24秒前
Tt完成签到 ,获得积分10
25秒前
我是老大应助小风车采纳,获得30
25秒前
25秒前
毅宁静610发布了新的文献求助10
25秒前
耍酷白筠发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010961
求助须知:如何正确求助?哪些是违规求助? 3550599
关于积分的说明 11306013
捐赠科研通 3284931
什么是DOI,文献DOI怎么找? 1810918
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811514