Prediction of uranium adsorption capacity on biochar by machine learning methods

生物炭 吸附 环境科学 材料科学 化学 冶金 有机化学 热解
作者
Tianxing Da,Hui-Kang Ren,Wen-ke He,Siyi Gong,Tao Chen
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:10 (5): 108449-108449 被引量:70
标识
DOI:10.1016/j.jece.2022.108449
摘要

The effective separation of uranium is a challenge for the treatment of radioactive wastewater. In this study, four machine learning (ML) methods (linear regression, support vector regression, random forest, and multilayer perceptron artificial neural network) were applied to predict the adsorption capacity of uranium on biochar. The relative importance of physical and chemical properties of biochar was also analyzed. Independent adsorption experiments were conducted with four biochar to verify the ML model. After training and verification, the model obtained with two hidden layers perceptron artificial neural network performs best by comparing the values of R 2 and RMSE. The structural properties of biochar, such as specific surface area, are more important for the adsorption capacity of uranium than the chemical composition. ML modeling provides a new strategy for the design and tailoring of biochar for uranium adsorption, which can significantly reduce the experimental workload and the safety risks associated with radioactivity. • Machine learning methods were successfully applied to predict uranium adsorption on biochar. • The model obtained by multilayer perceptron with two hidden layers shows the best performance. • Machine learning models were verified by the independent adsorption experiments. • The physical properties of biochar are more important than the chemical properties for uranium adsorption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雨后彩虹伤完成签到,获得积分10
1秒前
popkeke完成签到,获得积分10
2秒前
amberzyc应助仁爱的念文采纳,获得10
2秒前
欧克完成签到 ,获得积分10
3秒前
花根发布了新的文献求助10
3秒前
3秒前
小木完成签到,获得积分10
3秒前
勤恳风华完成签到,获得积分10
3秒前
承乐发布了新的文献求助10
3秒前
兜兜完成签到,获得积分10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
老实从蕾完成签到 ,获得积分10
6秒前
6秒前
7秒前
二三三发布了新的文献求助10
7秒前
好名字发布了新的文献求助10
7秒前
A.y.w完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
科研通AI6应助sci大户采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
俭朴凝旋应助cxxxx采纳,获得10
10秒前
youyuanDeng发布了新的文献求助10
10秒前
10秒前
小蘑菇应助川ccc采纳,获得10
11秒前
tree完成签到,获得积分10
11秒前
wanci应助地球采纳,获得10
12秒前
科研通AI6应助志小天采纳,获得10
12秒前
隐形曼青应助地球采纳,获得10
12秒前
Ava应助地球采纳,获得10
12秒前
小蘑菇应助地球采纳,获得10
12秒前
00发布了新的文献求助10
13秒前
刘刘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809