Prediction of uranium adsorption capacity on biochar by machine learning methods

生物炭 吸附 环境科学 材料科学 化学 冶金 有机化学 热解
作者
Tianxing Da,Hui-Kang Ren,Wen-ke He,Siyi Gong,Tao Chen
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:10 (5): 108449-108449 被引量:69
标识
DOI:10.1016/j.jece.2022.108449
摘要

The effective separation of uranium is a challenge for the treatment of radioactive wastewater. In this study, four machine learning (ML) methods (linear regression, support vector regression, random forest, and multilayer perceptron artificial neural network) were applied to predict the adsorption capacity of uranium on biochar. The relative importance of physical and chemical properties of biochar was also analyzed. Independent adsorption experiments were conducted with four biochar to verify the ML model. After training and verification, the model obtained with two hidden layers perceptron artificial neural network performs best by comparing the values of R 2 and RMSE. The structural properties of biochar, such as specific surface area, are more important for the adsorption capacity of uranium than the chemical composition. ML modeling provides a new strategy for the design and tailoring of biochar for uranium adsorption, which can significantly reduce the experimental workload and the safety risks associated with radioactivity. • Machine learning methods were successfully applied to predict uranium adsorption on biochar. • The model obtained by multilayer perceptron with two hidden layers shows the best performance. • Machine learning models were verified by the independent adsorption experiments. • The physical properties of biochar are more important than the chemical properties for uranium adsorption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
脑洞疼应助小米采纳,获得10
2秒前
2秒前
茶茶完成签到,获得积分10
3秒前
yue发布了新的文献求助10
4秒前
静心完成签到,获得积分10
4秒前
希望天下0贩的0应助shirley采纳,获得10
5秒前
大猫爪草完成签到,获得积分10
5秒前
青柠完成签到,获得积分10
6秒前
禾风发布了新的文献求助10
6秒前
程小小发布了新的文献求助10
7秒前
孔wj完成签到,获得积分10
7秒前
美满元灵完成签到,获得积分10
7秒前
yue完成签到,获得积分10
8秒前
8秒前
不去明知山完成签到 ,获得积分10
12秒前
Momomo应助轮椅采纳,获得10
12秒前
伏龙完成签到,获得积分10
13秒前
纵马山川剑自提完成签到,获得积分10
14秒前
Akim应助科研助理采纳,获得10
14秒前
bigpluto发布了新的文献求助50
15秒前
禾风完成签到,获得积分10
15秒前
16秒前
17秒前
明亮香菇完成签到,获得积分10
19秒前
闪闪小小发布了新的文献求助10
20秒前
大个应助杨老师采纳,获得10
20秒前
李存孝发布了新的文献求助10
20秒前
帅气鹭洋发布了新的文献求助10
22秒前
早睡早起完成签到,获得积分10
22秒前
李健应助小刘采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
明月照我程完成签到,获得积分10
23秒前
执着发布了新的文献求助10
25秒前
浮游应助早睡早起采纳,获得10
26秒前
程小小完成签到,获得积分10
28秒前
帅气鹭洋完成签到,获得积分10
30秒前
大媛大靳吃地瓜完成签到,获得积分10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365