Prediction of uranium adsorption capacity on biochar by machine learning methods

生物炭 吸附 环境科学 材料科学 化学 冶金 有机化学 热解
作者
Tianxing Da,Hui-Kang Ren,Wen-ke He,Siyi Gong,Tao Chen
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:10 (5): 108449-108449 被引量:69
标识
DOI:10.1016/j.jece.2022.108449
摘要

The effective separation of uranium is a challenge for the treatment of radioactive wastewater. In this study, four machine learning (ML) methods (linear regression, support vector regression, random forest, and multilayer perceptron artificial neural network) were applied to predict the adsorption capacity of uranium on biochar. The relative importance of physical and chemical properties of biochar was also analyzed. Independent adsorption experiments were conducted with four biochar to verify the ML model. After training and verification, the model obtained with two hidden layers perceptron artificial neural network performs best by comparing the values of R 2 and RMSE. The structural properties of biochar, such as specific surface area, are more important for the adsorption capacity of uranium than the chemical composition. ML modeling provides a new strategy for the design and tailoring of biochar for uranium adsorption, which can significantly reduce the experimental workload and the safety risks associated with radioactivity. • Machine learning methods were successfully applied to predict uranium adsorption on biochar. • The model obtained by multilayer perceptron with two hidden layers shows the best performance. • Machine learning models were verified by the independent adsorption experiments. • The physical properties of biochar are more important than the chemical properties for uranium adsorption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Duffy完成签到,获得积分10
1秒前
小青椒应助fangzhi采纳,获得60
1秒前
price发布了新的文献求助10
1秒前
2秒前
4秒前
MeSs完成签到,获得积分10
4秒前
4秒前
思柔完成签到,获得积分10
4秒前
gorgeous发布了新的文献求助30
5秒前
5秒前
英姑应助MM采纳,获得20
6秒前
7秒前
Andyfragrance完成签到,获得积分10
7秒前
科研通AI6应助simey采纳,获得10
7秒前
7秒前
善学以致用应助府中园马采纳,获得10
7秒前
white给white的求助进行了留言
7秒前
xuedan发布了新的文献求助10
8秒前
背英语发布了新的文献求助10
8秒前
玩命的靖仇完成签到,获得积分10
8秒前
8秒前
科研通AI6应助Zhusy采纳,获得10
9秒前
思源应助Zhusy采纳,获得10
9秒前
机灵的波比应助affff采纳,获得10
9秒前
tombo100发布了新的文献求助50
9秒前
9秒前
碧蓝的安露完成签到 ,获得积分10
10秒前
Ava应助bluesky采纳,获得10
10秒前
10秒前
充电宝应助割牙龈肉采纳,获得10
11秒前
11秒前
11秒前
12秒前
彩色亿先发布了新的文献求助10
13秒前
田様应助anwen采纳,获得10
13秒前
领导范儿应助kk采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336