Prediction of uranium adsorption capacity on biochar by machine learning methods

生物炭 吸附 环境科学 材料科学 化学 冶金 有机化学 热解
作者
Tianxing Da,Hui-Kang Ren,Wen-ke He,Siyi Gong,Tao Chen
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:10 (5): 108449-108449 被引量:70
标识
DOI:10.1016/j.jece.2022.108449
摘要

The effective separation of uranium is a challenge for the treatment of radioactive wastewater. In this study, four machine learning (ML) methods (linear regression, support vector regression, random forest, and multilayer perceptron artificial neural network) were applied to predict the adsorption capacity of uranium on biochar. The relative importance of physical and chemical properties of biochar was also analyzed. Independent adsorption experiments were conducted with four biochar to verify the ML model. After training and verification, the model obtained with two hidden layers perceptron artificial neural network performs best by comparing the values of R 2 and RMSE. The structural properties of biochar, such as specific surface area, are more important for the adsorption capacity of uranium than the chemical composition. ML modeling provides a new strategy for the design and tailoring of biochar for uranium adsorption, which can significantly reduce the experimental workload and the safety risks associated with radioactivity. • Machine learning methods were successfully applied to predict uranium adsorption on biochar. • The model obtained by multilayer perceptron with two hidden layers shows the best performance. • Machine learning models were verified by the independent adsorption experiments. • The physical properties of biochar are more important than the chemical properties for uranium adsorption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助hu123采纳,获得10
1秒前
多情以山发布了新的文献求助10
1秒前
小次郎完成签到,获得积分10
1秒前
An完成签到,获得积分10
1秒前
JamesPei应助NicotineZen采纳,获得10
2秒前
mmw发布了新的文献求助10
2秒前
yznfly应助最爱吃火锅采纳,获得50
2秒前
领导范儿应助XXX采纳,获得10
3秒前
3秒前
Owen应助somous采纳,获得20
3秒前
msw发布了新的文献求助10
4秒前
4秒前
bkagyin应助哈哈哈哈哈哈采纳,获得10
4秒前
4秒前
Ganann发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
yilin完成签到,获得积分10
5秒前
lilei发布了新的文献求助20
5秒前
木中一完成签到,获得积分10
6秒前
7秒前
bjx完成签到,获得积分10
7秒前
mmw完成签到,获得积分10
8秒前
fsgdf发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
健壮绍辉完成签到,获得积分10
9秒前
9秒前
蓝天发布了新的文献求助10
9秒前
盛夏如花发布了新的文献求助10
9秒前
9秒前
刘教授发布了新的文献求助10
9秒前
10秒前
bjx发布了新的文献求助10
10秒前
10秒前
全宝林完成签到,获得积分10
11秒前
执着安莲完成签到,获得积分10
11秒前
感动的仙人掌完成签到,获得积分10
11秒前
拾诣发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836