基因
生物
基因家族
转录组
基因组
遗传学
基因复制
基因表达
作者
Xueling Ye,Changying Liu,Huiling Yan,Yan Wan,Qi Wu,Xiaoyong Wu,Gang Zhao,Liang Zou,Dabing Xiang
出处
期刊:Gene
[Elsevier]
日期:2022-09-11
卷期号:847: 146884-146884
被引量:14
标识
DOI:10.1016/j.gene.2022.146884
摘要
Heavy metal-associated (HMA) genes are those related to heavy metal transport and detoxification in plants. HMA genes have not been reported in Tartary buckwheat so far. In this study, we accessed the HMA genes of Tartary buckwheat by genome-wide identification for the first time. A total of 56 HMA genes were identified, including 36 ATX1 (antioxidant protein1) genes, 13 HIPP (heavy metal-associated isoprenylated plant protein) genes, and 7 P1B-ATPase (P1B-type adenosine triphosphatase) genes. These gene structures, motif compositions, chromosomal distribution, phylogenetic relationship, duplication events, interaction networks, cis-acting elements, and transcriptional expression under cadmium (Cd) stress were investigated. Among them, genes in HIPP and ATX1 subfamilies were more closely related. The 56 HMA genes were involved in the regulation of metal ion transport and homeostasis by binding metal ions, likely triggered by signals transducted by plant hormones. Fifteen of these HMA genes played regulatory roles under Cd stress. FtP1bA1 was identified to be a core gene involved in the defense regulation of Cd stress. Our results provide not only the first overview and characteristics of HMA genes in the whole genome of Tartary buckwheat but also a valuable reference for the functional analysis of HMA genes under Cd stress. Understanding changes in gene regulation induced by Cd stress lays the foundation for breeding resistant varieties.
科研通智能强力驱动
Strongly Powered by AbleSci AI