Network Modeling Based on GNN and Network Behaviors

计算机科学 排队延迟 网络延迟 服务质量 调度(生产过程) 计算机网络 抖动 端到端延迟 聚类分析 网络数据包 分布式计算 人工智能 数学优化 数学 电信
作者
Yu Zhu,Waixi Liu,Sen Ling,Junming Luo
标识
DOI:10.1109/icccs55155.2022.9846439
摘要

Accurate network modeling can be used to help optimize load balancing or routing/flow scheduling strategies to ensure Quality of Service (QoS). However, existing network modeling methods have some disadvantages, such as, not being suitable for actual networks and low generalization. This article proposes a Link Delay Model (LDM) based on graph neural network (GNN). The key idea is inspired from the following observations: there is an inherent correlation between the delay, jitter, packet loss, and throughput of each link (this article calls them the basic network behavior), and the basic network behaviors of some links can fully decide and reflect the global network behavior (e.g., end-to-end delay). Firstly, this article proposes two link selection schemes (i.e., all links and few common links selected by clustering). Then, we use an improved GNN to learn the inherent relationship between the basic network behaviors of selected links and the global network behavior. Where the improved GNN uses multiple RNN iterations to aggregate messages in the message aggregation stage. The experiment results verify the feasibility and effectiveness of LDM. When using all links, LDM can accurately predict the end-to-end delay (R2=0.969). Compared with Queuing model and RouteNet, R2 is increased by 73% and 11%, respectively; under unknown flow scheduling strategy, the generalization ability of LDM (MRE=0.285) is also much better than Queuing model and RouteNet. When using partial common links, LDM has close prediction to RouteNet but reduces overhead by 78%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澜生发布了新的文献求助10
刚刚
在水一方应助惠惠采纳,获得10
刚刚
852应助zZ采纳,获得10
刚刚
小马甲应助陌路采纳,获得10
1秒前
1335804518完成签到 ,获得积分10
2秒前
2秒前
甜甜醉波完成签到,获得积分10
2秒前
科研通AI2S应助卷卷王采纳,获得10
3秒前
可爱的函函应助梦里采纳,获得10
3秒前
沐晴完成签到,获得积分10
4秒前
入夏完成签到,获得积分10
4秒前
4秒前
4秒前
苏州小北发布了新的文献求助10
5秒前
5秒前
snail完成签到,获得积分10
6秒前
劈里啪啦完成签到,获得积分10
6秒前
wanci应助Jasmine采纳,获得10
7秒前
aoxiangcaizi12完成签到,获得积分10
7秒前
ding应助通~采纳,获得30
8秒前
9秒前
Annie发布了新的文献求助10
9秒前
晨曦完成签到,获得积分10
10秒前
十一发布了新的文献求助10
10秒前
顾矜应助Peter采纳,获得30
11秒前
Ayanami完成签到,获得积分10
11秒前
英俊的铭应助ysl采纳,获得30
11秒前
酷波er应助范范采纳,获得10
11秒前
12秒前
Akim应助damian采纳,获得30
12秒前
12秒前
14秒前
番茄炒西红柿完成签到,获得积分10
15秒前
无限安蕾完成签到,获得积分10
15秒前
15秒前
飘逸蘑菇发布了新的文献求助10
16秒前
混沌完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794