Network Modeling Based on GNN and Network Behaviors

计算机科学 排队延迟 网络延迟 服务质量 调度(生产过程) 计算机网络 抖动 端到端延迟 聚类分析 网络数据包 分布式计算 人工智能 数学优化 电信 数学
作者
Yu Zhu,Waixi Liu,Sen Ling,Junming Luo
标识
DOI:10.1109/icccs55155.2022.9846439
摘要

Accurate network modeling can be used to help optimize load balancing or routing/flow scheduling strategies to ensure Quality of Service (QoS). However, existing network modeling methods have some disadvantages, such as, not being suitable for actual networks and low generalization. This article proposes a Link Delay Model (LDM) based on graph neural network (GNN). The key idea is inspired from the following observations: there is an inherent correlation between the delay, jitter, packet loss, and throughput of each link (this article calls them the basic network behavior), and the basic network behaviors of some links can fully decide and reflect the global network behavior (e.g., end-to-end delay). Firstly, this article proposes two link selection schemes (i.e., all links and few common links selected by clustering). Then, we use an improved GNN to learn the inherent relationship between the basic network behaviors of selected links and the global network behavior. Where the improved GNN uses multiple RNN iterations to aggregate messages in the message aggregation stage. The experiment results verify the feasibility and effectiveness of LDM. When using all links, LDM can accurately predict the end-to-end delay (R2=0.969). Compared with Queuing model and RouteNet, R2 is increased by 73% and 11%, respectively; under unknown flow scheduling strategy, the generalization ability of LDM (MRE=0.285) is also much better than Queuing model and RouteNet. When using partial common links, LDM has close prediction to RouteNet but reduces overhead by 78%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
香蕉觅云应助xiaozy采纳,获得10
1秒前
wu完成签到,获得积分10
1秒前
2秒前
2秒前
从前慢完成签到,获得积分10
2秒前
2秒前
秦QQ完成签到 ,获得积分20
2秒前
xyh发布了新的文献求助30
2秒前
ybigwhite发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
王迪迪完成签到,获得积分10
3秒前
4秒前
勤劳沛柔发布了新的文献求助10
4秒前
zz完成签到,获得积分10
4秒前
那咋了发布了新的文献求助10
4秒前
4秒前
4秒前
bkagyin应助phil采纳,获得10
5秒前
乐乐应助大帅采纳,获得50
5秒前
Manuscript发布了新的文献求助10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
王迪迪发布了新的文献求助10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
充电宝应助洪星采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得30
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
slim完成签到 ,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848