Dual-Interlayers Constructed by Ti3c2tx/Ionic Liquid Enhance Efficient Performance for Solid Garnet Batteriesinterests

材料科学 离子液体 对偶(语法数字) 纳米技术 化学工程 化学 工程类 有机化学 文学类 艺术 催化作用
作者
Xi Wang,Yong Wang,Yiyu Wu,Yunmiao Fan,Yang Tian
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4185761
摘要

Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid garnet-type electrolyte has been widely reported due to its outstanding safety and electrochemical stability. However, the inherent rigidity and brittleness of LLZTO lead to poor contact with anode/cathode and the operation failure of full cells. Herein, the dual-interlayers are constructed as the fast interfacial ion-migration channel by using Ti3C2Tx (Mxene, Tx is -O, -OH, -F), polyvinylidene fluoride (PVDF) and ionic liquid (IL, LiTFSI in [BMIM][TFSI]), which promote the intimating contact between LLZTO and anode/cathode, and suppress Li-dendrite growth. Notably, the terminating group (Tx) in Ti3C2Tx can enhance the interaction between the Mxene and polymer chain, resulting in the decreasing crystallinity of the polymer and increasing interlayer ion conductivity. Moreover, the multi-layer structure of Ti3C2Tx can induce uniform ion flux and construct the shielding of Li-dendrite. Meanwhile, IL can wet the cathode to promote intimate interface contact and be decomposed into some inorganic compounds (such as LiN3, LiF and Li2Sx), resulting in reduced interfacial resistance and fast Li-ion transportation. Consequently, in the prepared Li-symmetric cell, the interfacial resistance on the anode side plunges to 33.1 Ω cm-2, and stably maintains over 1000 h without short circuit at 0.05 mA cm-2. The full cell of Li|LiFePO4 delivers a high initial capacity of 158.52 mAh g−1 and outstanding retention of 90.18 % after 100 cycles at 60 °C and 0.2 C. Our work provides an efficient strategy to design dual-interlayers between LLZTO and anode/cathode for the interfacial modification of high-performance solid garnet batteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
xu发布了新的文献求助10
3秒前
黄黄黄发布了新的文献求助10
3秒前
FOCUS完成签到 ,获得积分10
4秒前
Crazy_Runner发布了新的文献求助10
4秒前
朱先生完成签到 ,获得积分10
5秒前
学徒发布了新的文献求助10
5秒前
白马爱毛驴完成签到,获得积分10
5秒前
5秒前
of发布了新的文献求助20
7秒前
李健的小迷弟应助杨佳霖采纳,获得10
10秒前
11秒前
11秒前
12秒前
SciGPT应助研友-wbg-LjbQIL采纳,获得10
13秒前
xu完成签到,获得积分20
13秒前
popdragon发布了新的文献求助10
13秒前
14秒前
从容果汁完成签到 ,获得积分10
14秒前
14秒前
迅速泽洋发布了新的文献求助10
15秒前
爆米花应助水123采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
大猪头发布了新的文献求助10
17秒前
戴帽子的花盆完成签到,获得积分10
17秒前
17秒前
3w完成签到,获得积分10
18秒前
樱桃窝窝头完成签到 ,获得积分10
19秒前
20秒前
21秒前
玩命的十三完成签到 ,获得积分10
21秒前
yy完成签到,获得积分10
22秒前
22秒前
22秒前
22秒前
CodeCraft应助Yong-AI-BUPT采纳,获得10
22秒前
哒哒完成签到,获得积分10
23秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603709
求助须知:如何正确求助?哪些是违规求助? 4688692
关于积分的说明 14855500
捐赠科研通 4694733
什么是DOI,文献DOI怎么找? 2540943
邀请新用户注册赠送积分活动 1507131
关于科研通互助平台的介绍 1471814