Comparing deep learning models for low-light natural scene image enhancement and their impact on object detection and classification: Overview, empirical evaluation, and challenges

人工智能 深度学习 目标检测 计算机科学 图像(数学) 对象(语法) 自然(考古学) 计算机视觉 模式识别(心理学) 机器学习 地理 考古
作者
Rayan Al Sobbahi,Joe Tekli
出处
期刊:Signal Processing-image Communication [Elsevier]
卷期号:109: 116848-116848 被引量:50
标识
DOI:10.1016/j.image.2022.116848
摘要

Low-light image (LLI) enhancement is an important image processing task that aims at improving the illumination of images taken under low-light conditions. Recently, a remarkable progress has been made in utilizing deep learning (DL) approaches for LLI enhancement. This paper provides a concise and comprehensive review and comparative study of the most recent DL models used for LLI enhancement. To our knowledge, this is the first comparative study dedicated to DL-based models for LLI enhancement. We address LLI enhancement in two ways: (i) standalone, as a separate task, and (ii) end-to-end, as a pre-processing stage embedded within another high-level computer vision task, namely object detection and classification. The paper consists of six logical parts. First, we provide an overview of the background and literature in LLI enhancement. Second, we describe the test data and experimental setup of the study. Third, we present a quantitative and qualitative comparison of the visual and perceptual quality achieved by 10 of the most recent DL-based LLI enhancement models. Fourth, we present a comparative analysis for object detection and classification performance achieved by 4 different object detection models applied on LLIs and their enhanced counterparts. Fifth, we perform a feature analysis of DL feature maps extracted from normal, low-light, and enhanced images, and perform the occlusion experiment to better understand the effect of LLI enhancement on the object detection and classification task. Finally, we provide our conclusions and highlight future steps and potential directions. • Evaluates Deep Learning (DL) models for Low-light Image (LLI) enhancement. • Compares 10 LLI enhancement models and 4 object detection and classification models. • Provides a quantitative and qualitative comparison of visual and perceptual quality. • Evaluates impact of LLI enhancement on object detecting and classification quality. • Performs occlusion experiment to study LLI enhancement’s effect on object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你看,这只猫丶完成签到 ,获得积分10
刚刚
彭于晏应助和成采纳,获得10
1秒前
1秒前
小马甲应助飘逸的虔采纳,获得10
2秒前
安全平静完成签到,获得积分10
3秒前
wenxiansci应助桔子鲁采纳,获得10
3秒前
我不李姐完成签到,获得积分10
3秒前
薰硝壤应助科研通管家采纳,获得30
3秒前
英姑应助科研通管家采纳,获得10
4秒前
丹菲完成签到,获得积分10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
科研通AI2S应助大气的康采纳,获得10
4秒前
5秒前
5秒前
5秒前
勾勾1991完成签到,获得积分10
6秒前
fabian完成签到,获得积分10
7秒前
拉拉完成签到,获得积分10
7秒前
8秒前
廉乐儿发布了新的文献求助10
8秒前
狂野的冰真完成签到 ,获得积分10
8秒前
米乐时光完成签到 ,获得积分10
9秒前
荒野小蚂蚁完成签到,获得积分10
9秒前
Mannose完成签到,获得积分10
9秒前
9秒前
爱听歌的大地完成签到 ,获得积分10
10秒前
念兹在兹完成签到,获得积分10
10秒前
10秒前
www发布了新的文献求助10
10秒前
Ava应助sea采纳,获得10
10秒前
小飞侠应助犹豫嚣采纳,获得10
10秒前
Likyliky发布了新的文献求助10
11秒前
whtuii完成签到,获得积分10
11秒前
俊逸鹏笑发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
JamesPei应助Lermta采纳,获得20
12秒前
七星嘿咻完成签到,获得积分10
12秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068596
求助须知:如何正确求助?哪些是违规求助? 2722493
关于积分的说明 7477698
捐赠科研通 2369542
什么是DOI,文献DOI怎么找? 1256421
科研通“疑难数据库(出版商)”最低求助积分说明 609576
版权声明 596835