Deep learning framework for predictive modeling of crude oil price for sustainable management in oil markets

计算机科学 杠杆(统计) 人工智能 可预测性 随机森林 机器学习 数据挖掘 数学 统计
作者
Abdullah Ali Salamai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118658-118658 被引量:19
标识
DOI:10.1016/j.eswa.2022.118658
摘要

Crude oil price predictability has continually been considered as a fundamental argument of finance literature, given its critical propositions for risk management, investment decisions, and commercial and financial policymaking. This work presents an innovative learning framework for efficient predictive modeling of daily and weekly crude oil price (COP) information, which aims to enable sustainable management in oil markets. Firstly, an optimized version of variation mode decomposition (OVMD) is proposed to adaptively decompose the original COP time series into multiple modes based on a set of optimized parameters calculated with a Tree-structured Parzen Estimator (TPE) algorithm. Secondly, an AdaBoost algorithm is redesigned using random forest (RF) to model the future price information in the modes with the high frequency. Thirdly, a new deep network is presented to develop automatically learn spatial–temporal representations from decomposed COP data, where a novel Conv-former module is designed to efficiently extract local as well as global spatial representations without incurring extra computational costs. Followingly, Multiple Long short-term Memory (LSTM) networks are stacked to learn temporal representations from input modes. To further empower the representation power of our framework, a new bidirectional learning module is presented to stack the LSTM layer to learn from COP data in the forward and backward directions. To validate the efficiency of the proposed framework, this work performs experimental simulations and analyses based on a case study from Brent crude oil prices at both daily and weekly scales. The experimental findings show up the competent predictive modeling capabilities of the proposed framework over the cutting-edge methods rendering it as a promising solution to enable sustainable management in crude oil markets. The proposed framework can be generalized to different predictive modeling tasks and hence qualified to be used as a valuable tool for oil portfolio creation, property pricing, and risk management in Crude Oil Markets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓佳鑫Alan应助牛顿的苹果采纳,获得10
1秒前
wwz完成签到 ,获得积分10
2秒前
晚意完成签到 ,获得积分10
2秒前
3秒前
bi完成签到,获得积分10
3秒前
呆瓜发布了新的文献求助10
3秒前
4秒前
桐桐应助nenoaowu采纳,获得30
4秒前
4秒前
不吃橘子发布了新的文献求助10
6秒前
笑尽往事发布了新的文献求助10
6秒前
叶黄素完成签到,获得积分10
6秒前
成就的水桃完成签到,获得积分20
7秒前
lxb应助的的的的的采纳,获得10
8秒前
贝拉发布了新的文献求助10
9秒前
9秒前
井鼃完成签到,获得积分10
9秒前
super完成签到,获得积分10
9秒前
10秒前
Kowalski完成签到,获得积分10
10秒前
ewk发布了新的文献求助10
11秒前
11秒前
归安发布了新的文献求助10
13秒前
酷波er应助麻花精采纳,获得30
13秒前
叶黄素发布了新的文献求助80
14秒前
井鼃发布了新的文献求助10
16秒前
天天快乐应助微纳组刘同采纳,获得10
18秒前
18秒前
法知一发布了新的文献求助10
18秒前
首席医官完成签到,获得积分10
18秒前
栾小鱼完成签到,获得积分10
20秒前
20秒前
花椒的喵酱完成签到,获得积分10
21秒前
21秒前
Dungjyut完成签到,获得积分10
22秒前
Ma_80814完成签到 ,获得积分10
22秒前
yyyy发布了新的文献求助10
23秒前
23秒前
春秋蝉完成签到 ,获得积分10
24秒前
嘿嘿完成签到 ,获得积分20
24秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Handbook of Qualitative Research 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129368
求助须知:如何正确求助?哪些是违规求助? 2780183
关于积分的说明 7746679
捐赠科研通 2435368
什么是DOI,文献DOI怎么找? 1294055
科研通“疑难数据库(出版商)”最低求助积分说明 623518
版权声明 600542