化学物理
阴极
氧化物
锂(药物)
分子动力学
相(物质)
材料科学
星团(航天器)
氧气
分子
从头算
密度泛函理论
化学
计算化学
物理化学
医学
有机化学
计算机科学
冶金
程序设计语言
内分泌学
作者
Kit McColl,Samuel W. Coles,Pezhman Zarabadi–Poor,Benjamin J. Morgan,M. Saïful Islam
标识
DOI:10.26434/chemrxiv-2023-9v2dw
摘要
Lithium-rich oxide cathodes lose energy density during cycling due to atomic disordering and nanoscale structural rearrangements, both of which are challenging to characterise. Here we use a combined approach of ab initio molecular dynamics and cluster-expansion-based Monte Carlo simulations to resolve the kinetics and thermodynamics of these processes in an exemplar layered Li-rich cathode, Li1.2–xMn0.8O2. We identify a kinetically accessible and thermodynamically favoured mechanism to form O2 molecules in the bulk, involving Mn migration and driven by interlayer oxygen dimerisation. At the top of charge the bulk structure locally phase-segregates into MnO2-rich regions and Mn-deficient nanovoids, which contain O2 molecules as a nanoconfined fluid. These nanovoids are connected in a percolating network, potentially allowing long-ranged oxygen transport, and linking bulk O2 formation to surface O2 loss. These insights highlight the importance of future strategies to kinetically stabilise the bulk structure of Li-rich O-redox cathodes to maintain their high energy densities.
科研通智能强力驱动
Strongly Powered by AbleSci AI