亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comparison of EMG-based hand gesture recognition systems based on supervised and reinforcement learning

计算机科学 人工智能 强化学习 手势识别 机器学习 手势 监督学习 特征(语言学) 特征提取 模式识别(心理学) 试验装置 人工神经网络 语言学 哲学
作者
Juan Pablo Vásconez,Lorena Isabel Barona López,Ángel Leonardo Valdivieso Caraguay,Marco E. Benalcázar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106327-106327 被引量:18
标识
DOI:10.1016/j.engappai.2023.106327
摘要

Hand gesture recognition (HGR) based on electromyography signals (EMGs) has been one of the most relevant research topics in the human–machine interfaces field in recent years. The HGR systems are aimed at identifying the moment in which a hand gesture was performed as well as the gesture category. To date, several HGR state-of-the-art methods are based mainly on supervised machine learning (ML) techniques. However, the use of reinforcement learning (RL) approaches to classify EMGs has not yet been thoroughly evaluated. Moreover, the behavior of HGR systems based on ML and RL methods on large datasets for user-general HGR systems is still an open research problem. In the present work, we compare a supervised learning with a reinforcement learning HGR system, which are composed of the following stages: pre-processing, feature extraction, classification, and post-processing. We compared the performance of using both a supervised and a reinforcement learning method to classify and recognize EMGs for six different hand gestures. We performed experiments by using training, validation, and test sets on the EMG-EPN-612 public dataset, and the results were evaluated for user-general HGR models. The final accuracy results on the test set demonstrate that the best model was obtained for the supervised learning method, reaching up to 90.49%±9.7% and 86.83%±11.30% for classification and recognition accuracy respectively. The results obtained in this work demonstrated that supervised learning methods outperform reinforcement learning methods for user-general HGR systems based on EMGs for the EMG-EPN-612 dataset distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
32秒前
谭代涛发布了新的文献求助10
38秒前
55秒前
谭代涛发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
harrywoo发布了新的文献求助30
1分钟前
大模型应助harrywoo采纳,获得30
1分钟前
科研通AI6应助明芬采纳,获得10
1分钟前
科研通AI6应助谭代涛采纳,获得10
2分钟前
2分钟前
3分钟前
harrywoo发布了新的文献求助30
3分钟前
彭于晏应助真实的映寒采纳,获得10
3分钟前
loitinsuen完成签到,获得积分10
3分钟前
3分钟前
Jasper应助明芬采纳,获得10
3分钟前
酷波er应助harrywoo采纳,获得10
3分钟前
3分钟前
3分钟前
明芬发布了新的文献求助10
4分钟前
谭代涛发布了新的文献求助10
4分钟前
草木完成签到 ,获得积分20
4分钟前
4分钟前
5分钟前
明芬发布了新的文献求助10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
5分钟前
精明犀牛完成签到,获得积分10
5分钟前
5分钟前
vvsloy发布了新的文献求助10
5分钟前
lutos发布了新的文献求助10
5分钟前
精明犀牛发布了新的文献求助10
5分钟前
5分钟前
5分钟前
Imran完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599825
求助须知:如何正确求助?哪些是违规求助? 4685564
关于积分的说明 14838662
捐赠科研通 4671771
什么是DOI,文献DOI怎么找? 2538317
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470946