A comparison of EMG-based hand gesture recognition systems based on supervised and reinforcement learning

计算机科学 人工智能 强化学习 手势识别 机器学习 手势 监督学习 特征(语言学) 特征提取 模式识别(心理学) 试验装置 人工神经网络 语言学 哲学
作者
Juan Pablo Vásconez,Lorena Isabel Barona López,Ángel Leonardo Valdivieso Caraguay,Marco E. Benalcázar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106327-106327 被引量:3
标识
DOI:10.1016/j.engappai.2023.106327
摘要

Hand gesture recognition (HGR) based on electromyography signals (EMGs) has been one of the most relevant research topics in the human–machine interfaces field in recent years. The HGR systems are aimed at identifying the moment in which a hand gesture was performed as well as the gesture category. To date, several HGR state-of-the-art methods are based mainly on supervised machine learning (ML) techniques. However, the use of reinforcement learning (RL) approaches to classify EMGs has not yet been thoroughly evaluated. Moreover, the behavior of HGR systems based on ML and RL methods on large datasets for user-general HGR systems is still an open research problem. In the present work, we compare a supervised learning with a reinforcement learning HGR system, which are composed of the following stages: pre-processing, feature extraction, classification, and post-processing. We compared the performance of using both a supervised and a reinforcement learning method to classify and recognize EMGs for six different hand gestures. We performed experiments by using training, validation, and test sets on the EMG-EPN-612 public dataset, and the results were evaluated for user-general HGR models. The final accuracy results on the test set demonstrate that the best model was obtained for the supervised learning method, reaching up to 90.49%±9.7% and 86.83%±11.30% for classification and recognition accuracy respectively. The results obtained in this work demonstrated that supervised learning methods outperform reinforcement learning methods for user-general HGR systems based on EMGs for the EMG-EPN-612 dataset distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nikki完成签到,获得积分10
刚刚
BOSS徐完成签到,获得积分10
刚刚
Lijunjie完成签到,获得积分10
刚刚
1秒前
1秒前
Ava应助坦率的寻双采纳,获得10
2秒前
zhangyuheng完成签到,获得积分10
2秒前
3秒前
Lavendar完成签到 ,获得积分10
4秒前
xjcy应助xzy998采纳,获得10
4秒前
MOYU完成签到,获得积分20
4秒前
研友_LX66qZ完成签到,获得积分10
4秒前
安详安寒发布了新的文献求助10
5秒前
6秒前
7秒前
万能图书馆应助hesongheng采纳,获得10
7秒前
8秒前
8秒前
酷酷的俊驰完成签到 ,获得积分10
9秒前
9秒前
burninhell完成签到,获得积分10
9秒前
10秒前
Yuantian发布了新的文献求助10
10秒前
明理映真完成签到,获得积分10
10秒前
小叮当发布了新的文献求助10
12秒前
12秒前
13秒前
15秒前
几号大家好完成签到,获得积分10
17秒前
温暖乌龟发布了新的文献求助10
18秒前
jyy应助Yuantian采纳,获得30
18秒前
懵懂的灭男完成签到,获得积分10
19秒前
橙浅关注了科研通微信公众号
19秒前
20秒前
20秒前
蛋蛋咖发布了新的文献求助10
20秒前
rid4iuclous2完成签到,获得积分10
22秒前
NikiJu完成签到,获得积分10
22秒前
星辰大海应助亦屿森采纳,获得10
22秒前
22秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046