清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A comparison of EMG-based hand gesture recognition systems based on supervised and reinforcement learning

计算机科学 人工智能 强化学习 手势识别 机器学习 手势 监督学习 特征(语言学) 特征提取 模式识别(心理学) 试验装置 人工神经网络 语言学 哲学
作者
Juan Pablo Vásconez,Lorena Isabel Barona López,Ángel Leonardo Valdivieso Caraguay,Marco E. Benalcázar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106327-106327 被引量:3
标识
DOI:10.1016/j.engappai.2023.106327
摘要

Hand gesture recognition (HGR) based on electromyography signals (EMGs) has been one of the most relevant research topics in the human–machine interfaces field in recent years. The HGR systems are aimed at identifying the moment in which a hand gesture was performed as well as the gesture category. To date, several HGR state-of-the-art methods are based mainly on supervised machine learning (ML) techniques. However, the use of reinforcement learning (RL) approaches to classify EMGs has not yet been thoroughly evaluated. Moreover, the behavior of HGR systems based on ML and RL methods on large datasets for user-general HGR systems is still an open research problem. In the present work, we compare a supervised learning with a reinforcement learning HGR system, which are composed of the following stages: pre-processing, feature extraction, classification, and post-processing. We compared the performance of using both a supervised and a reinforcement learning method to classify and recognize EMGs for six different hand gestures. We performed experiments by using training, validation, and test sets on the EMG-EPN-612 public dataset, and the results were evaluated for user-general HGR models. The final accuracy results on the test set demonstrate that the best model was obtained for the supervised learning method, reaching up to 90.49%±9.7% and 86.83%±11.30% for classification and recognition accuracy respectively. The results obtained in this work demonstrated that supervised learning methods outperform reinforcement learning methods for user-general HGR systems based on EMGs for the EMG-EPN-612 dataset distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糯米团的完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
yuli完成签到 ,获得积分10
13秒前
19秒前
l老王完成签到 ,获得积分10
20秒前
海阔天空完成签到 ,获得积分10
30秒前
38秒前
TOUHOUU完成签到 ,获得积分10
43秒前
YANA完成签到,获得积分10
52秒前
58秒前
木头发布了新的文献求助10
1分钟前
真的OK完成签到,获得积分10
1分钟前
CGBIO完成签到,获得积分10
1分钟前
文献蚂蚁完成签到,获得积分10
1分钟前
朝夕之晖完成签到,获得积分10
1分钟前
啪嗒大白球完成签到,获得积分10
1分钟前
洋芋饭饭完成签到,获得积分10
1分钟前
1分钟前
CAOHOU应助小王采纳,获得10
1分钟前
迅速千愁完成签到 ,获得积分10
1分钟前
白昼の月完成签到 ,获得积分0
1分钟前
1分钟前
gao完成签到 ,获得积分10
1分钟前
1分钟前
Moyan4332发布了新的文献求助30
1分钟前
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
2分钟前
小王完成签到,获得积分10
2分钟前
CC完成签到,获得积分10
2分钟前
2分钟前
yana发布了新的文献求助10
2分钟前
龙猫爱看书完成签到,获得积分10
2分钟前
郑郑爱吃蜂蜜完成签到,获得积分10
2分钟前
orixero应助yana采纳,获得10
2分钟前
个性惜蕊完成签到,获得积分10
2分钟前
难搞哦发布了新的文献求助10
2分钟前
赘婿应助小鱼女侠采纳,获得10
2分钟前
王子发布了新的文献求助10
2分钟前
zhuosht完成签到 ,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008593
求助须知:如何正确求助?哪些是违规求助? 3548274
关于积分的说明 11298724
捐赠科研通 3282975
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218