A comparison of EMG-based hand gesture recognition systems based on supervised and reinforcement learning

计算机科学 人工智能 强化学习 手势识别 机器学习 手势 监督学习 特征(语言学) 特征提取 模式识别(心理学) 试验装置 人工神经网络 语言学 哲学
作者
Juan Pablo Vásconez,Lorena Isabel Barona López,Ángel Leonardo Valdivieso Caraguay,Marco E. Benalcázar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106327-106327 被引量:3
标识
DOI:10.1016/j.engappai.2023.106327
摘要

Hand gesture recognition (HGR) based on electromyography signals (EMGs) has been one of the most relevant research topics in the human–machine interfaces field in recent years. The HGR systems are aimed at identifying the moment in which a hand gesture was performed as well as the gesture category. To date, several HGR state-of-the-art methods are based mainly on supervised machine learning (ML) techniques. However, the use of reinforcement learning (RL) approaches to classify EMGs has not yet been thoroughly evaluated. Moreover, the behavior of HGR systems based on ML and RL methods on large datasets for user-general HGR systems is still an open research problem. In the present work, we compare a supervised learning with a reinforcement learning HGR system, which are composed of the following stages: pre-processing, feature extraction, classification, and post-processing. We compared the performance of using both a supervised and a reinforcement learning method to classify and recognize EMGs for six different hand gestures. We performed experiments by using training, validation, and test sets on the EMG-EPN-612 public dataset, and the results were evaluated for user-general HGR models. The final accuracy results on the test set demonstrate that the best model was obtained for the supervised learning method, reaching up to 90.49%±9.7% and 86.83%±11.30% for classification and recognition accuracy respectively. The results obtained in this work demonstrated that supervised learning methods outperform reinforcement learning methods for user-general HGR systems based on EMGs for the EMG-EPN-612 dataset distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ambrose应助Desamin采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
彭于彦祖应助科研通管家采纳,获得20
3秒前
汉堡包应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得30
4秒前
蓝豆子发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
巧克力曲奇完成签到,获得积分20
5秒前
8秒前
白白白完成签到,获得积分10
8秒前
王雨薇发布了新的文献求助30
9秒前
9秒前
光亮乘云完成签到,获得积分10
9秒前
9秒前
AAACharlie发布了新的文献求助10
10秒前
蒸馏水完成签到,获得积分10
12秒前
吳某人完成签到,获得积分10
12秒前
乐乐应助ssr01采纳,获得10
13秒前
端庄大树发布了新的文献求助30
13秒前
13秒前
飘逸的念露完成签到,获得积分10
13秒前
wy.he应助XX采纳,获得10
14秒前
14秒前
14秒前
14秒前
lily发布了新的文献求助10
14秒前
16秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701957
求助须知:如何正确求助?哪些是违规求助? 3251981
关于积分的说明 9877418
捐赠科研通 2964034
什么是DOI,文献DOI怎么找? 1625427
邀请新用户注册赠送积分活动 770018
科研通“疑难数据库(出版商)”最低求助积分说明 742722