A comparison of EMG-based hand gesture recognition systems based on supervised and reinforcement learning

计算机科学 人工智能 强化学习 手势识别 机器学习 手势 监督学习 特征(语言学) 特征提取 模式识别(心理学) 试验装置 人工神经网络 语言学 哲学
作者
Juan Pablo Vásconez,Lorena Isabel Barona López,Ángel Leonardo Valdivieso Caraguay,Marco E. Benalcázar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:123: 106327-106327 被引量:18
标识
DOI:10.1016/j.engappai.2023.106327
摘要

Hand gesture recognition (HGR) based on electromyography signals (EMGs) has been one of the most relevant research topics in the human–machine interfaces field in recent years. The HGR systems are aimed at identifying the moment in which a hand gesture was performed as well as the gesture category. To date, several HGR state-of-the-art methods are based mainly on supervised machine learning (ML) techniques. However, the use of reinforcement learning (RL) approaches to classify EMGs has not yet been thoroughly evaluated. Moreover, the behavior of HGR systems based on ML and RL methods on large datasets for user-general HGR systems is still an open research problem. In the present work, we compare a supervised learning with a reinforcement learning HGR system, which are composed of the following stages: pre-processing, feature extraction, classification, and post-processing. We compared the performance of using both a supervised and a reinforcement learning method to classify and recognize EMGs for six different hand gestures. We performed experiments by using training, validation, and test sets on the EMG-EPN-612 public dataset, and the results were evaluated for user-general HGR models. The final accuracy results on the test set demonstrate that the best model was obtained for the supervised learning method, reaching up to 90.49%±9.7% and 86.83%±11.30% for classification and recognition accuracy respectively. The results obtained in this work demonstrated that supervised learning methods outperform reinforcement learning methods for user-general HGR systems based on EMGs for the EMG-EPN-612 dataset distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓畅完成签到,获得积分10
2秒前
科研通AI6.1应助对称破缺采纳,获得10
5秒前
刘十一完成签到 ,获得积分10
5秒前
5秒前
慢半拍完成签到,获得积分10
5秒前
von完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
17263365721完成签到 ,获得积分10
7秒前
冬天的回忆完成签到 ,获得积分10
7秒前
风清扬应助科研通管家采纳,获得30
8秒前
李健应助科研通管家采纳,获得10
8秒前
dangdang应助科研通管家采纳,获得40
8秒前
8秒前
Frank应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
9秒前
Frank应助科研通管家采纳,获得10
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
泽松应助科研通管家采纳,获得10
9秒前
9秒前
大个应助科研通管家采纳,获得50
9秒前
量子星尘发布了新的文献求助10
9秒前
小二郎应助Narcissus采纳,获得10
9秒前
寒冷的小熊猫完成签到,获得积分10
10秒前
11秒前
华仔应助苗苗会喵喵采纳,获得10
12秒前
14秒前
wayne完成签到,获得积分10
16秒前
zcydbttj2011完成签到 ,获得积分10
20秒前
limo完成签到 ,获得积分10
20秒前
ying完成签到,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060