亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comparison of EMG-based hand gesture recognition systems based on supervised and reinforcement learning

计算机科学 人工智能 强化学习 手势识别 机器学习 手势 监督学习 特征(语言学) 特征提取 模式识别(心理学) 试验装置 人工神经网络 语言学 哲学
作者
Juan Pablo Vásconez,Lorena Isabel Barona López,Ángel Leonardo Valdivieso Caraguay,Marco E. Benalcázar
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106327-106327 被引量:18
标识
DOI:10.1016/j.engappai.2023.106327
摘要

Hand gesture recognition (HGR) based on electromyography signals (EMGs) has been one of the most relevant research topics in the human–machine interfaces field in recent years. The HGR systems are aimed at identifying the moment in which a hand gesture was performed as well as the gesture category. To date, several HGR state-of-the-art methods are based mainly on supervised machine learning (ML) techniques. However, the use of reinforcement learning (RL) approaches to classify EMGs has not yet been thoroughly evaluated. Moreover, the behavior of HGR systems based on ML and RL methods on large datasets for user-general HGR systems is still an open research problem. In the present work, we compare a supervised learning with a reinforcement learning HGR system, which are composed of the following stages: pre-processing, feature extraction, classification, and post-processing. We compared the performance of using both a supervised and a reinforcement learning method to classify and recognize EMGs for six different hand gestures. We performed experiments by using training, validation, and test sets on the EMG-EPN-612 public dataset, and the results were evaluated for user-general HGR models. The final accuracy results on the test set demonstrate that the best model was obtained for the supervised learning method, reaching up to 90.49%±9.7% and 86.83%±11.30% for classification and recognition accuracy respectively. The results obtained in this work demonstrated that supervised learning methods outperform reinforcement learning methods for user-general HGR systems based on EMGs for the EMG-EPN-612 dataset distribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绵绵球完成签到,获得积分0
4秒前
小马甲应助谈理想采纳,获得10
14秒前
咕咕咕发布了新的文献求助10
21秒前
giszy完成签到,获得积分10
33秒前
英姑应助暮飘飘采纳,获得10
43秒前
小马甲应助咕咕咕采纳,获得10
45秒前
llk完成签到 ,获得积分10
47秒前
wjx完成签到 ,获得积分10
48秒前
yy完成签到 ,获得积分0
56秒前
南寅完成签到,获得积分10
1分钟前
1分钟前
传奇3应助zhounan采纳,获得10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
隐形曼青应助欢喜的怜菡采纳,获得10
1分钟前
1分钟前
欢喜的怜菡完成签到,获得积分10
1分钟前
1分钟前
暮飘飘发布了新的文献求助10
1分钟前
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
RNATx完成签到,获得积分10
1分钟前
可久斯基完成签到 ,获得积分10
1分钟前
成就念芹完成签到,获得积分10
1分钟前
1分钟前
2分钟前
胖胖猪完成签到,获得积分10
2分钟前
2分钟前
半糖神仙完成签到 ,获得积分10
2分钟前
简行完成签到 ,获得积分10
2分钟前
2分钟前
大模型应助半糖神仙采纳,获得10
2分钟前
wop111发布了新的文献求助10
2分钟前
头头完成签到,获得积分10
2分钟前
铁锤xy发布了新的文献求助30
2分钟前
2分钟前
咕咕咕发布了新的文献求助10
2分钟前
2分钟前
科目三应助铁锤xy采纳,获得10
2分钟前
南山发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944743
求助须知:如何正确求助?哪些是违规求助? 4209538
关于积分的说明 13085385
捐赠科研通 3989390
什么是DOI,文献DOI怎么找? 2184062
邀请新用户注册赠送积分活动 1199427
关于科研通互助平台的介绍 1112518