Identifying plant disease and severity from leaves: A deep multitask learning framework using triple-branch Swin Transformer and deep supervision

人工智能 深度学习 判别式 计算机科学 多任务学习 植物病害 机器学习 特征提取 模式识别(心理学) 联营 特征学习 提取器 工程类 任务(项目管理) 系统工程 生物技术 工艺工程 生物
作者
Bin Yang,Zhulian Wang,Jinyuan Guo,Lili Guo,Qiaokang Liang,Qiu Zeng,Ruiyuan Zhao,Jianwu Wang,Caihong Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:209: 107809-107809 被引量:19
标识
DOI:10.1016/j.compag.2023.107809
摘要

Accurate identification of plant disease is of great significance for intelligent agriculture. Currently, plant species, disease, and severity are considered as joint categories in most disease classification methods, which will increase the number of categories and decrease the generalization ability of these models. Compared to disease and severity, information on plant species is less important because different species may suffer from the same disease, and such information is usually known to users. Given this, this paper proposed a novel triple-branch Swin Transformer classification (TSTC) network for classification of disease and severity simultaneously and separately. The TSTC network consists of a multitask feature extraction module, a feature fusion module and a deep supervision module. Firstly, preliminary features are extracted using a triple-branch network, which is built based on Swin Transformer backbone under the multitask classification strategy (i.e., one for disease classification, one for severity classification and the other for deep supervision). After that, these features are fused using compact bilinear pooling technique to enhance the feature extractor’s learning ability and thus more discriminative features can be extracted. Finally, the deep supervision module combines losses from both hidden layers and the last layers of the TSTC so that it can be trained in the direction where all layers can work efficiently for disease and severity classifications. Compared to five widely used classification networks, experiments with the AI Challenger 2018 dataset shows that our proposed TSTC network achieves the highest accuracy with an overall accuracy of 99.00% for disease classification and 88.73% for severity classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caizx完成签到,获得积分10
1秒前
2秒前
哈哈发布了新的文献求助10
2秒前
冷静石头完成签到,获得积分10
4秒前
立军发布了新的文献求助10
4秒前
lwww423关注了科研通微信公众号
6秒前
zwy应助nhh采纳,获得20
6秒前
stella233发布了新的文献求助20
9秒前
牛X完成签到,获得积分10
10秒前
重要的奇异果完成签到,获得积分10
12秒前
12秒前
14秒前
不良帅完成签到,获得积分10
15秒前
16秒前
玛斯特尔完成签到,获得积分10
16秒前
Paris完成签到 ,获得积分10
18秒前
852应助阿飞采纳,获得10
19秒前
accept完成签到,获得积分10
20秒前
20秒前
ASHAN完成签到,获得积分10
22秒前
du完成签到 ,获得积分0
24秒前
堃kun发布了新的文献求助10
25秒前
LZW完成签到,获得积分10
25秒前
25秒前
11完成签到,获得积分10
26秒前
28秒前
29秒前
Tourist应助立军采纳,获得10
30秒前
30秒前
boomboom发布了新的文献求助10
31秒前
852应助小淘气采纳,获得10
31秒前
淡然菲音发布了新的文献求助10
32秒前
情怀应助擦撒擦擦采纳,获得10
32秒前
szc-2000发布了新的文献求助10
35秒前
wali完成签到 ,获得积分10
36秒前
37秒前
39秒前
Chanyl发布了新的文献求助10
42秒前
43秒前
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496397
关于积分的说明 11081817
捐赠科研通 3226886
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800997