Identifying plant disease and severity from leaves: A deep multitask learning framework using triple-branch Swin Transformer and deep supervision

人工智能 深度学习 判别式 计算机科学 多任务学习 植物病害 机器学习 特征提取 模式识别(心理学) 联营 特征学习 提取器 工程类 任务(项目管理) 系统工程 生物技术 工艺工程 生物
作者
Bin Yang,Zhulian Wang,Jinyuan Guo,Lili Guo,Qiaokang Liang,Qiu Zeng,Ruiyuan Zhao,Jianwu Wang,Caihong Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:209: 107809-107809 被引量:34
标识
DOI:10.1016/j.compag.2023.107809
摘要

Accurate identification of plant disease is of great significance for intelligent agriculture. Currently, plant species, disease, and severity are considered as joint categories in most disease classification methods, which will increase the number of categories and decrease the generalization ability of these models. Compared to disease and severity, information on plant species is less important because different species may suffer from the same disease, and such information is usually known to users. Given this, this paper proposed a novel triple-branch Swin Transformer classification (TSTC) network for classification of disease and severity simultaneously and separately. The TSTC network consists of a multitask feature extraction module, a feature fusion module and a deep supervision module. Firstly, preliminary features are extracted using a triple-branch network, which is built based on Swin Transformer backbone under the multitask classification strategy (i.e., one for disease classification, one for severity classification and the other for deep supervision). After that, these features are fused using compact bilinear pooling technique to enhance the feature extractor’s learning ability and thus more discriminative features can be extracted. Finally, the deep supervision module combines losses from both hidden layers and the last layers of the TSTC so that it can be trained in the direction where all layers can work efficiently for disease and severity classifications. Compared to five widely used classification networks, experiments with the AI Challenger 2018 dataset shows that our proposed TSTC network achieves the highest accuracy with an overall accuracy of 99.00% for disease classification and 88.73% for severity classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助兆辉采纳,获得10
刚刚
bkagyin应助炸毛可乐采纳,获得10
1秒前
赵江林完成签到,获得积分20
1秒前
美美咩发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
科研通AI6应助养老院采纳,获得10
5秒前
期待应助大喜子采纳,获得10
6秒前
calm完成签到,获得积分10
6秒前
7秒前
Owen应助美美咩采纳,获得10
7秒前
01发布了新的文献求助10
7秒前
开天神秀发布了新的文献求助10
9秒前
9秒前
9秒前
爆米花应助小壳儿采纳,获得10
9秒前
9秒前
kgrvlm完成签到 ,获得积分10
10秒前
哈噗咻发布了新的文献求助10
10秒前
哈哈哈完成签到,获得积分20
11秒前
文艺的枫叶完成签到 ,获得积分10
11秒前
12秒前
12秒前
跳跃的飞风完成签到,获得积分10
12秒前
MiRoRo发布了新的文献求助10
12秒前
13秒前
13秒前
潜龙发布了新的文献求助10
14秒前
哈哈哈发布了新的文献求助10
14秒前
Mure发布了新的文献求助10
15秒前
16秒前
炸毛可乐发布了新的文献求助10
16秒前
黑心茶叶蛋完成签到,获得积分10
16秒前
aimee发布了新的文献求助10
16秒前
梓榆发布了新的文献求助10
16秒前
开朗孤兰发布了新的文献求助10
18秒前
科研通AI6应助YY采纳,获得10
19秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384621
求助须知:如何正确求助?哪些是违规求助? 4507409
关于积分的说明 14028029
捐赠科研通 4417130
什么是DOI,文献DOI怎么找? 2426268
邀请新用户注册赠送积分活动 1419058
关于科研通互助平台的介绍 1397395