Solvent effects and mass transfer on aroma extraction during solid-state distillation

蒸馏 化学 芳香 蒸汽蒸馏 传质 萃取(化学) 工艺工程 减压蒸馏 过程(计算) 色谱法 计算机科学 食品科学 工程类 操作系统
作者
Yuchen Gao,Shuang Chen,Guangyuan Jin,Shuyu Song,Xiaogang Wang,Rongzhen Zhang,Yan Xu
出处
期刊:Food bioscience [Elsevier]
卷期号:53: 102682-102682 被引量:2
标识
DOI:10.1016/j.fbio.2023.102682
摘要

Steam distillation is an important unit operation to extract valuable compounds from natural solid-state substrates. Solid-state distillation with steam can extract aroma from fermented solid substrate such as fermented grains of Chinese liquor fermentation. However, this procedure is still operated based on generations of empirical skills rather than a technique under process control based on scientific principles. The resulting drawback is poor mass and heat transfer with undesired consequences concerning productivity, quality and sustainability. Mathematical modelling can be a powerful tool to get insight into such an empirical process for potential rational design, optimization and control. Therefore, we established a mathematical model to describe the mass transfer based on kinetic parameters. The simulation results show that the distillation had a natural column plate structure that more effectively concentrated compounds. Furthermore, this structure resulted in a high ethanol concentration in the distillate. To evaluate subsequent effect of high ethanol concentration, we analysed aroma compounds in the distillates under simulated conditions with or without ethanol. The hydrophobic compounds were fitted well under conditions with ethanol, whereas hydrophilic compounds had similar outcomes under both conditions. The results show that ethanol could accelerate the release of hydrophobic compounds in Chinese liquor distillation. Therefore, solvent could be one of the important factors to optimize the distillation process. Our findings provide a reference for improving the extraction during solid-state distillation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助风华采纳,获得10
刚刚
xmhxpz完成签到,获得积分10
刚刚
2秒前
Youngen发布了新的文献求助10
3秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
online1881完成签到,获得积分10
6秒前
会飞的鱼完成签到,获得积分10
9秒前
小余同学完成签到 ,获得积分10
10秒前
吉涛发布了新的文献求助10
11秒前
田...完成签到,获得积分10
11秒前
阔达如柏完成签到,获得积分10
12秒前
wy完成签到,获得积分10
13秒前
Ammon完成签到,获得积分10
14秒前
明理小凝完成签到 ,获得积分10
14秒前
大苗完成签到,获得积分10
16秒前
曾经的凌青完成签到 ,获得积分10
17秒前
18秒前
体贴的手链完成签到,获得积分10
18秒前
18秒前
Youngen完成签到,获得积分10
19秒前
小樊爱摸鱼完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
20秒前
21秒前
21秒前
21秒前
wy应助科研通管家采纳,获得10
21秒前
wy应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
21秒前
21秒前
21秒前
思源应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789530
求助须知:如何正确求助?哪些是违规求助? 5720862
关于积分的说明 15474819
捐赠科研通 4917334
什么是DOI,文献DOI怎么找? 2646933
邀请新用户注册赠送积分活动 1594542
关于科研通互助平台的介绍 1549081