Floods and Heavy Precipitation at the Global Scale: 100‐Year Analysis and 180‐Year Reconstruction

降水 大洪水 比例(比率) 气候学 环境科学 气象学 地理 地质学 地图学 考古
作者
Benjamin Renard,David McInerney,Seth Westra,Michael Leonard,Dmitri Kavetski,Mark Thyer,Jean‐Philippe Vidal
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:128 (9)
标识
DOI:10.1029/2022jd037908
摘要

Abstract Floods and heavy precipitation have disruptive impacts worldwide, but their historical variability remains only partially understood at the global scale. This article aims at reducing this knowledge gap by jointly analyzing seasonal maxima of streamflow and precipitation at more than 3,000 stations over a 100‐year period. The analysis is based on Hidden Climate Indices (HCIs). Like standard climate indices (e.g., Nino 3.4, NAO), HCIs are used as covariates explaining the temporal variability of data, but unlike them, HCIs are estimated from the data. In this work, a distinction is made between common HCIs, that affect both heavy precipitation and floods, and specific HCIs, that exclusively affect one or the other. Overall, HCIs do not show noticeable autocorrelation, but some are affected by noticeable trends. In particular, strong and wide‐ranging trends are identified in precipitation‐specific HCIs, while trends affecting flood‐specific HCIs are weaker and have more localized effects. A probabilistic model is then derived to link HCIs and large‐scale atmospheric variables (pressure, wind, temperature) and to reconstruct HCIs since 1836 using the 20CRv3 reanalysis. In turn this allows estimating the probability of occurrence of floods and heavy precipitation at the global scale. This 180‐year reconstruction highlights flood hot‐spots and hot‐moments in the distant past, well before the establishment of perennial monitoring networks. The approach presented in this study is generic and paves the way for an improved characterization of historical variability by making a better use of long but highly irregular station data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优美的谷完成签到,获得积分10
1秒前
YY发布了新的文献求助10
2秒前
数学情缘完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
陳.发布了新的文献求助10
7秒前
8秒前
8秒前
左肩微笑发布了新的文献求助10
10秒前
11秒前
hcd12138完成签到,获得积分10
12秒前
jbear发布了新的文献求助10
12秒前
科研通AI2S应助完美凝竹采纳,获得10
12秒前
12秒前
14秒前
robi发布了新的文献求助10
16秒前
lige完成签到 ,获得积分10
17秒前
RenYigmin发布了新的文献求助10
19秒前
whatever应助搬石头采纳,获得30
19秒前
bkagyin应助xuhongbo采纳,获得10
20秒前
zls发布了新的文献求助10
21秒前
飞在夏夜的猫完成签到,获得积分10
21秒前
一二发布了新的文献求助10
24秒前
25秒前
陳.完成签到 ,获得积分10
26秒前
RenYigmin完成签到,获得积分10
26秒前
CipherSage应助mzy采纳,获得10
27秒前
小晋完成签到,获得积分10
28秒前
3AM完成签到,获得积分10
29秒前
asdfj发布了新的文献求助10
30秒前
30秒前
李海妍发布了新的文献求助30
30秒前
31秒前
晴天完成签到 ,获得积分10
31秒前
31秒前
AU完成签到 ,获得积分10
32秒前
35秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825