亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Floods and Heavy Precipitation at the Global Scale: 100‐Year Analysis and 180‐Year Reconstruction

降水 大洪水 比例(比率) 气候学 环境科学 气象学 地理 地质学 地图学 考古
作者
Benjamin Renard,David McInerney,Seth Westra,Michael Leonard,Dmitri Kavetski,Mark Thyer,Jean‐Philippe Vidal
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:128 (9)
标识
DOI:10.1029/2022jd037908
摘要

Abstract Floods and heavy precipitation have disruptive impacts worldwide, but their historical variability remains only partially understood at the global scale. This article aims at reducing this knowledge gap by jointly analyzing seasonal maxima of streamflow and precipitation at more than 3,000 stations over a 100‐year period. The analysis is based on Hidden Climate Indices (HCIs). Like standard climate indices (e.g., Nino 3.4, NAO), HCIs are used as covariates explaining the temporal variability of data, but unlike them, HCIs are estimated from the data. In this work, a distinction is made between common HCIs, that affect both heavy precipitation and floods, and specific HCIs, that exclusively affect one or the other. Overall, HCIs do not show noticeable autocorrelation, but some are affected by noticeable trends. In particular, strong and wide‐ranging trends are identified in precipitation‐specific HCIs, while trends affecting flood‐specific HCIs are weaker and have more localized effects. A probabilistic model is then derived to link HCIs and large‐scale atmospheric variables (pressure, wind, temperature) and to reconstruct HCIs since 1836 using the 20CRv3 reanalysis. In turn this allows estimating the probability of occurrence of floods and heavy precipitation at the global scale. This 180‐year reconstruction highlights flood hot‐spots and hot‐moments in the distant past, well before the establishment of perennial monitoring networks. The approach presented in this study is generic and paves the way for an improved characterization of historical variability by making a better use of long but highly irregular station data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wyx完成签到,获得积分10
2秒前
若尘完成签到,获得积分10
3秒前
若尘发布了新的文献求助10
8秒前
TruongThe完成签到,获得积分20
39秒前
小蘑菇应助明亮的涵山采纳,获得10
45秒前
小豆芽完成签到,获得积分10
51秒前
明亮的涵山完成签到,获得积分20
56秒前
1分钟前
1分钟前
1分钟前
简单慕凝完成签到,获得积分10
1分钟前
1分钟前
宁宁大王发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
爆米花应助catherine采纳,获得10
2分钟前
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
WWW完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
春宇浩然发布了新的文献求助10
3分钟前
3分钟前
4分钟前
二狗完成签到 ,获得积分10
4分钟前
哲000完成签到 ,获得积分10
4分钟前
4分钟前
Hello应助科研通管家采纳,获得10
5分钟前
踏云完成签到 ,获得积分20
5分钟前
lsl完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723904
求助须知:如何正确求助?哪些是违规求助? 5282409
关于积分的说明 15299338
捐赠科研通 4872163
什么是DOI,文献DOI怎么找? 2616598
邀请新用户注册赠送积分活动 1566476
关于科研通互助平台的介绍 1523314