Floods and Heavy Precipitation at the Global Scale: 100‐Year Analysis and 180‐Year Reconstruction

降水 大洪水 比例(比率) 气候学 环境科学 气象学 地理 地质学 地图学 考古
作者
Benjamin Renard,David McInerney,Seth Westra,Michael Leonard,Dmitri Kavetski,Mark Thyer,Jean‐Philippe Vidal
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:128 (9)
标识
DOI:10.1029/2022jd037908
摘要

Abstract Floods and heavy precipitation have disruptive impacts worldwide, but their historical variability remains only partially understood at the global scale. This article aims at reducing this knowledge gap by jointly analyzing seasonal maxima of streamflow and precipitation at more than 3,000 stations over a 100‐year period. The analysis is based on Hidden Climate Indices (HCIs). Like standard climate indices (e.g., Nino 3.4, NAO), HCIs are used as covariates explaining the temporal variability of data, but unlike them, HCIs are estimated from the data. In this work, a distinction is made between common HCIs, that affect both heavy precipitation and floods, and specific HCIs, that exclusively affect one or the other. Overall, HCIs do not show noticeable autocorrelation, but some are affected by noticeable trends. In particular, strong and wide‐ranging trends are identified in precipitation‐specific HCIs, while trends affecting flood‐specific HCIs are weaker and have more localized effects. A probabilistic model is then derived to link HCIs and large‐scale atmospheric variables (pressure, wind, temperature) and to reconstruct HCIs since 1836 using the 20CRv3 reanalysis. In turn this allows estimating the probability of occurrence of floods and heavy precipitation at the global scale. This 180‐year reconstruction highlights flood hot‐spots and hot‐moments in the distant past, well before the establishment of perennial monitoring networks. The approach presented in this study is generic and paves the way for an improved characterization of historical variability by making a better use of long but highly irregular station data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭生发布了新的文献求助10
刚刚
keyanlv发布了新的文献求助10
刚刚
lilili发布了新的文献求助10
刚刚
NexusExplorer应助wrrop采纳,获得10
刚刚
Zx_1993应助Innocent_Story采纳,获得10
刚刚
哎哟发布了新的文献求助10
刚刚
weiliu发布了新的文献求助10
1秒前
ZWY完成签到,获得积分10
1秒前
wanci应助猪猪hero采纳,获得10
1秒前
27小天使应助林子采纳,获得30
1秒前
宓天问完成签到,获得积分10
1秒前
2秒前
顺心稚晴完成签到 ,获得积分10
2秒前
David发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
2秒前
喜欢朝雪发布了新的文献求助10
3秒前
3秒前
hometown完成签到,获得积分10
4秒前
张晨完成签到 ,获得积分10
4秒前
orixero应助踏实映天采纳,获得10
4秒前
4秒前
liangzhao完成签到,获得积分10
4秒前
wzyshzu完成签到,获得积分10
4秒前
5秒前
自由念露完成签到 ,获得积分10
5秒前
5秒前
小乐儿~完成签到,获得积分10
6秒前
香蕉觅云应助ZWY采纳,获得10
6秒前
李健的小迷弟应助22采纳,获得10
7秒前
7秒前
7秒前
qinmoming完成签到,获得积分10
8秒前
小胖饼饼发布了新的文献求助10
8秒前
8秒前
Flin发布了新的文献求助10
8秒前
9秒前
hui发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710