An improved pedestrian dead reckoning algorithm based on smartphone built-in MEMS sensors

航位推算 行人 航向(导航) 卡尔曼滤波器 计算机科学 弹道 启发式 人工智能 算法 模拟 计算机视觉 实时计算 工程类 电信 全球定位系统 运输工程 物理 天文 航空航天工程
作者
Gui‐Ling Zhao,Xu Wang,Huazhang Zhao,Zihao Jiang
出处
期刊:Aeu-international Journal of Electronics and Communications [Elsevier BV]
卷期号:168: 154674-154674
标识
DOI:10.1016/j.aeue.2023.154674
摘要

With the advantages of low cost, small size and lightweight, the smartphone has played a more and more important role in pedestrian indoor positioning. In particular, the application of Pedestrian Dead Reckoning (PDR) in the smartphone built-in MEMS sensors makes the application of smartphone more extensive. However, the zero-bias instability of the smartphone built-in MEMS sensors leads to the rapid accumulation of pedestrian trajectory calculation error. To solve this problem, we used the bias drift model and Kalman filter (KF) to denoise the original MEMS data. The dual-feature step detection model of peak domain and time domain was established to provide accurate step information for step length estimation and heading correction. Based on the Weinberg model, the three-steps constraint step length estimation (TCSLE) model was proposed to estimate step length accurately. Then, based on the improved heuristic drift elimination (iHDE), the adaptive drift elimination (ADE) model was proposed to identify different walking states. The correction models under different walking states were established to correct the heading angle accurately. Finally, the pedestrian trajectory was reconstructed using accurate step length and heading information. To verify the performance of the PDR algorithm based on the above model, three experimenters with different heights and genders were recruited, and three mobile phones with different sensor performance were selected. The experimenters moved smoothly and steadily with hand-held mobile phone, and 18 sets of experiments were carried out along two paths. The experiment results shown that the step length deviation was less than 1.4871 %, the horizontal positioning error was less than 1.6070 m, and the relative positioning error was less than 1.1816 %D. The proposed PDR algorithm has strong adaptability and robustness, and meets the needs of pedestrian indoor positioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯诺克虚空索敌完成签到,获得积分10
1秒前
Graham完成签到,获得积分10
2秒前
科研通AI5应助无奈世立采纳,获得10
2秒前
2秒前
2秒前
ATOM发布了新的文献求助10
3秒前
丘比特应助薄荷小姐采纳,获得10
3秒前
纯真的夏柳完成签到,获得积分10
3秒前
SZK完成签到,获得积分10
4秒前
Lorrie完成签到,获得积分10
4秒前
饼饼大王完成签到,获得积分10
4秒前
cdercder应助火星上书萱采纳,获得10
5秒前
沉淀完成签到 ,获得积分10
5秒前
叶子发布了新的文献求助10
5秒前
JONG发布了新的文献求助10
5秒前
5秒前
5秒前
西柚芝士茉莉完成签到,获得积分10
6秒前
wendydqw完成签到 ,获得积分10
7秒前
Rainey发布了新的文献求助40
7秒前
7秒前
东方巧曼完成签到,获得积分10
7秒前
8秒前
ffu发布了新的文献求助10
8秒前
隐形曼青应助饼饼大王采纳,获得10
9秒前
9秒前
田様应助henxi采纳,获得10
9秒前
英俊的铭应助原子超人采纳,获得10
9秒前
kkkkkkkkkk完成签到,获得积分10
9秒前
东方一斩发布了新的文献求助10
9秒前
如约而至发布了新的文献求助10
10秒前
13秒前
13秒前
Spiderman发布了新的文献求助10
13秒前
13秒前
13秒前
seele完成签到,获得积分10
13秒前
薄荷小姐发布了新的文献求助10
13秒前
基金中中中完成签到,获得积分10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774068
求助须知:如何正确求助?哪些是违规求助? 3319696
关于积分的说明 10196583
捐赠科研通 3034330
什么是DOI,文献DOI怎么找? 1664956
邀请新用户注册赠送积分活动 796461
科研通“疑难数据库(出版商)”最低求助积分说明 757475