已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved pedestrian dead reckoning algorithm based on smartphone built-in MEMS sensors

航位推算 行人 航向(导航) 卡尔曼滤波器 计算机科学 弹道 启发式 人工智能 算法 模拟 计算机视觉 实时计算 工程类 电信 全球定位系统 运输工程 物理 航空航天工程 天文
作者
Gui‐Ling Zhao,Xu Wang,Huazhang Zhao,Zihao Jiang
出处
期刊:Aeu-international Journal of Electronics and Communications [Elsevier BV]
卷期号:168: 154674-154674
标识
DOI:10.1016/j.aeue.2023.154674
摘要

With the advantages of low cost, small size and lightweight, the smartphone has played a more and more important role in pedestrian indoor positioning. In particular, the application of Pedestrian Dead Reckoning (PDR) in the smartphone built-in MEMS sensors makes the application of smartphone more extensive. However, the zero-bias instability of the smartphone built-in MEMS sensors leads to the rapid accumulation of pedestrian trajectory calculation error. To solve this problem, we used the bias drift model and Kalman filter (KF) to denoise the original MEMS data. The dual-feature step detection model of peak domain and time domain was established to provide accurate step information for step length estimation and heading correction. Based on the Weinberg model, the three-steps constraint step length estimation (TCSLE) model was proposed to estimate step length accurately. Then, based on the improved heuristic drift elimination (iHDE), the adaptive drift elimination (ADE) model was proposed to identify different walking states. The correction models under different walking states were established to correct the heading angle accurately. Finally, the pedestrian trajectory was reconstructed using accurate step length and heading information. To verify the performance of the PDR algorithm based on the above model, three experimenters with different heights and genders were recruited, and three mobile phones with different sensor performance were selected. The experimenters moved smoothly and steadily with hand-held mobile phone, and 18 sets of experiments were carried out along two paths. The experiment results shown that the step length deviation was less than 1.4871 %, the horizontal positioning error was less than 1.6070 m, and the relative positioning error was less than 1.1816 %D. The proposed PDR algorithm has strong adaptability and robustness, and meets the needs of pedestrian indoor positioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
domkps完成签到 ,获得积分10
1秒前
你今天学了多少完成签到 ,获得积分10
3秒前
3秒前
Huanghong完成签到,获得积分10
6秒前
汤汤杨杨完成签到,获得积分10
6秒前
荷兰香猪完成签到,获得积分10
6秒前
太阳罗山的地方完成签到,获得积分10
6秒前
彭于晏应助吃遍幼儿园采纳,获得10
7秒前
7秒前
Res_M完成签到 ,获得积分10
9秒前
独特丹萱完成签到,获得积分10
9秒前
美式发布了新的文献求助10
10秒前
12秒前
崔志海完成签到,获得积分10
14秒前
奋斗的绝悟完成签到,获得积分10
15秒前
斯文败类应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
机灵柚子应助科研通管家采纳,获得150
16秒前
田様应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
16秒前
悄悄完成签到 ,获得积分10
20秒前
Edison完成签到,获得积分10
29秒前
mr完成签到 ,获得积分10
32秒前
云翰完成签到,获得积分10
35秒前
饼干玮玮完成签到,获得积分10
36秒前
虚心涵山完成签到 ,获得积分10
37秒前
111完成签到 ,获得积分10
37秒前
同尘完成签到 ,获得积分10
37秒前
齐齐完成签到,获得积分10
38秒前
北觅完成签到 ,获得积分10
42秒前
优雅夕阳完成签到 ,获得积分0
46秒前
Timon完成签到,获得积分10
47秒前
目土土完成签到 ,获得积分10
47秒前
喜来乐发布了新的文献求助10
48秒前
完美世界应助同尘采纳,获得10
48秒前
饼饼完成签到,获得积分10
48秒前
轻松元绿完成签到 ,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4982546
求助须知:如何正确求助?哪些是违规求助? 4234223
关于积分的说明 13188600
捐赠科研通 4026045
什么是DOI,文献DOI怎么找? 2202562
邀请新用户注册赠送积分活动 1214824
关于科研通互助平台的介绍 1131402