An improved pedestrian dead reckoning algorithm based on smartphone built-in MEMS sensors

航位推算 行人 航向(导航) 卡尔曼滤波器 计算机科学 弹道 启发式 人工智能 算法 模拟 计算机视觉 实时计算 工程类 电信 全球定位系统 运输工程 物理 天文 航空航天工程
作者
Gui‐Ling Zhao,Xu Wang,Huazhang Zhao,Zihao Jiang
出处
期刊:Aeu-international Journal of Electronics and Communications [Elsevier BV]
卷期号:168: 154674-154674
标识
DOI:10.1016/j.aeue.2023.154674
摘要

With the advantages of low cost, small size and lightweight, the smartphone has played a more and more important role in pedestrian indoor positioning. In particular, the application of Pedestrian Dead Reckoning (PDR) in the smartphone built-in MEMS sensors makes the application of smartphone more extensive. However, the zero-bias instability of the smartphone built-in MEMS sensors leads to the rapid accumulation of pedestrian trajectory calculation error. To solve this problem, we used the bias drift model and Kalman filter (KF) to denoise the original MEMS data. The dual-feature step detection model of peak domain and time domain was established to provide accurate step information for step length estimation and heading correction. Based on the Weinberg model, the three-steps constraint step length estimation (TCSLE) model was proposed to estimate step length accurately. Then, based on the improved heuristic drift elimination (iHDE), the adaptive drift elimination (ADE) model was proposed to identify different walking states. The correction models under different walking states were established to correct the heading angle accurately. Finally, the pedestrian trajectory was reconstructed using accurate step length and heading information. To verify the performance of the PDR algorithm based on the above model, three experimenters with different heights and genders were recruited, and three mobile phones with different sensor performance were selected. The experimenters moved smoothly and steadily with hand-held mobile phone, and 18 sets of experiments were carried out along two paths. The experiment results shown that the step length deviation was less than 1.4871 %, the horizontal positioning error was less than 1.6070 m, and the relative positioning error was less than 1.1816 %D. The proposed PDR algorithm has strong adaptability and robustness, and meets the needs of pedestrian indoor positioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
柯一一应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
柯一一应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
柯一一应助科研通管家采纳,获得10
2秒前
Owen应助破三贼采纳,获得30
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
jjj应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
大模型应助冰美式乌龙茶采纳,获得30
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得50
2秒前
2秒前
iNk应助科研通管家采纳,获得10
2秒前
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
LeeFlavia发布了新的文献求助10
4秒前
Leon发布了新的文献求助10
5秒前
Kikua应助孤独的问凝采纳,获得20
5秒前
6秒前
6秒前
活力书包完成签到 ,获得积分10
7秒前
三省发布了新的文献求助10
7秒前
TKTK发布了新的文献求助30
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498