Cross-modality image translation: CT image synthesis of MR brain images using multi generative network with perceptual supervision

人工智能 磁共振成像 图像质量 医学 相似性(几何) 计算机科学 模式识别(心理学) 核医学 模态(人机交互) 放射科 图像(数学)
作者
Xianfan Gu,Yu Zhang,Wen Zeng,Sihua Zhong,Haining Wang,Dong Liang,Zhenlin Li,Zhanli Hu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:237: 107571-107571 被引量:11
标识
DOI:10.1016/j.cmpb.2023.107571
摘要

Computed tomography (CT) and magnetic resonance imaging (MRI) are the mainstream imaging technologies for clinical practice. CT imaging can reveal high-quality anatomical and physiopathological structures, especially bone tissue, for clinical diagnosis. MRI provides high resolution in soft tissue and is sensitive to lesions. CT combined with MRI diagnosis has become a regular image-guided radiation treatment plan.In this paper, to reduce the dose of radiation exposure in CT examinations and ameliorate the limitations of traditional virtual imaging technologies, we propose a Generative MRI-to-CT transformation method with structural perceptual supervision. Even though structural reconstruction is structurally misaligned in the MRI-CT dataset registration, our proposed method can better align structural information of synthetic CT (sCT) images to input MRI images while simulating the modality of CT in the MRI-to-CT cross-modality transformation.We retrieved a total of 3416 brain MRI-CT paired images as the train/test dataset, including 1366 train images of 10 patients and 2050 test images of 15 patients. Several methods (the baseline methods and the proposed method) were evaluated by the HU difference map, HU distribution, and various similarity metrics, including the mean absolute error (MAE), structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC). In our quantitative experimental results, the proposed method achieves the lowest MAE mean of 0.147, highest PSNR mean of 19.27, and NCC mean of 0.431 in the overall CT test dataset.In conclusion, both qualitative and quantitative results of synthetic CT validate that the proposed method can preserve higher similarity of structural information of the bone tissue of target CT than the baseline methods. Furthermore, the proposed method provides better HU intensity reconstruction for simulating the distribution of the CT modality. The experimental estimation indicates that the proposed method is worth further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助凶狠的源智采纳,获得80
刚刚
折戟沉沙发布了新的文献求助10
1秒前
1秒前
AAA发布了新的文献求助10
2秒前
2秒前
Camellia发布了新的文献求助10
4秒前
lyt发布了新的文献求助10
5秒前
思源应助淡淡小土豆采纳,获得20
6秒前
甜甜亦丝完成签到,获得积分20
6秒前
111发布了新的文献求助10
6秒前
William发布了新的文献求助10
6秒前
SciGPT应助5High_0采纳,获得10
7秒前
9秒前
xxx完成签到,获得积分20
9秒前
超级煎饼完成签到 ,获得积分10
10秒前
桐桐应助Z鸡汤采纳,获得20
10秒前
11秒前
tony96完成签到,获得积分20
12秒前
12秒前
ASIS发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
xuxingjie发布了新的文献求助10
14秒前
大个应助Elaine采纳,获得10
15秒前
mango发布了新的文献求助10
16秒前
研友_nEWaD8完成签到,获得积分10
17秒前
zzz完成签到,获得积分10
17秒前
sweets完成签到,获得积分10
19秒前
LL发布了新的文献求助30
19秒前
19秒前
21秒前
www完成签到,获得积分10
22秒前
23秒前
23秒前
222发布了新的文献求助10
23秒前
黄量杰成发布了新的文献求助10
24秒前
25秒前
25秒前
sansan完成签到 ,获得积分10
26秒前
manru发布了新的文献求助10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983