Cross-modality image translation: CT image synthesis of MR brain images using multi generative network with perceptual supervision

人工智能 磁共振成像 图像质量 医学 相似性(几何) 计算机科学 模式识别(心理学) 核医学 模态(人机交互) 放射科 图像(数学)
作者
Xianfan Gu,Yu Zhang,Wen Zeng,Sihua Zhong,Haining Wang,Dong Liang,Zhenlin Li,Zhanli Hu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:237: 107571-107571 被引量:11
标识
DOI:10.1016/j.cmpb.2023.107571
摘要

Computed tomography (CT) and magnetic resonance imaging (MRI) are the mainstream imaging technologies for clinical practice. CT imaging can reveal high-quality anatomical and physiopathological structures, especially bone tissue, for clinical diagnosis. MRI provides high resolution in soft tissue and is sensitive to lesions. CT combined with MRI diagnosis has become a regular image-guided radiation treatment plan.In this paper, to reduce the dose of radiation exposure in CT examinations and ameliorate the limitations of traditional virtual imaging technologies, we propose a Generative MRI-to-CT transformation method with structural perceptual supervision. Even though structural reconstruction is structurally misaligned in the MRI-CT dataset registration, our proposed method can better align structural information of synthetic CT (sCT) images to input MRI images while simulating the modality of CT in the MRI-to-CT cross-modality transformation.We retrieved a total of 3416 brain MRI-CT paired images as the train/test dataset, including 1366 train images of 10 patients and 2050 test images of 15 patients. Several methods (the baseline methods and the proposed method) were evaluated by the HU difference map, HU distribution, and various similarity metrics, including the mean absolute error (MAE), structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC). In our quantitative experimental results, the proposed method achieves the lowest MAE mean of 0.147, highest PSNR mean of 19.27, and NCC mean of 0.431 in the overall CT test dataset.In conclusion, both qualitative and quantitative results of synthetic CT validate that the proposed method can preserve higher similarity of structural information of the bone tissue of target CT than the baseline methods. Furthermore, the proposed method provides better HU intensity reconstruction for simulating the distribution of the CT modality. The experimental estimation indicates that the proposed method is worth further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsazah完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
Lin完成签到,获得积分10
刚刚
小杭76应助活泼听露采纳,获得10
1秒前
1秒前
浮游应助wyt采纳,获得10
1秒前
嗯对完成签到 ,获得积分10
3秒前
3秒前
NexusExplorer应助宁天问采纳,获得10
4秒前
seedcui完成签到,获得积分10
6秒前
霜叶完成签到 ,获得积分10
7秒前
wanci应助daxiangqaq采纳,获得10
8秒前
9秒前
10秒前
12秒前
肽聚糖完成签到,获得积分20
12秒前
510发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
汉堡包应助fff采纳,获得10
16秒前
16秒前
...发布了新的文献求助20
17秒前
huan发布了新的文献求助10
17秒前
17秒前
隐形曼青应助冷静的面包采纳,获得10
18秒前
19秒前
浆糊完成签到 ,获得积分10
19秒前
xxz发布了新的文献求助30
19秒前
19秒前
淡扫峨眉发布了新的文献求助10
22秒前
周星星完成签到,获得积分10
22秒前
清秀的鼠标完成签到,获得积分10
22秒前
22秒前
鲤鱼发布了新的文献求助10
23秒前
AR发布了新的文献求助10
23秒前
大包鸡完成签到 ,获得积分10
24秒前
Orange应助干净绮烟采纳,获得10
25秒前
科研通AI2S应助LiuChuannan采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424665
求助须知:如何正确求助?哪些是违规求助? 4539081
关于积分的说明 14164862
捐赠科研通 4456109
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469