Cross-modality image translation: CT image synthesis of MR brain images using multi generative network with perceptual supervision

人工智能 磁共振成像 图像质量 医学 相似性(几何) 计算机科学 模式识别(心理学) 核医学 模态(人机交互) 放射科 图像(数学)
作者
Xianfan Gu,Yu Zhang,Wen Zeng,Sihua Zhong,Haining Wang,Dong Liang,Zhenlin Li,Zhanli Hu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:237: 107571-107571 被引量:5
标识
DOI:10.1016/j.cmpb.2023.107571
摘要

Computed tomography (CT) and magnetic resonance imaging (MRI) are the mainstream imaging technologies for clinical practice. CT imaging can reveal high-quality anatomical and physiopathological structures, especially bone tissue, for clinical diagnosis. MRI provides high resolution in soft tissue and is sensitive to lesions. CT combined with MRI diagnosis has become a regular image-guided radiation treatment plan.In this paper, to reduce the dose of radiation exposure in CT examinations and ameliorate the limitations of traditional virtual imaging technologies, we propose a Generative MRI-to-CT transformation method with structural perceptual supervision. Even though structural reconstruction is structurally misaligned in the MRI-CT dataset registration, our proposed method can better align structural information of synthetic CT (sCT) images to input MRI images while simulating the modality of CT in the MRI-to-CT cross-modality transformation.We retrieved a total of 3416 brain MRI-CT paired images as the train/test dataset, including 1366 train images of 10 patients and 2050 test images of 15 patients. Several methods (the baseline methods and the proposed method) were evaluated by the HU difference map, HU distribution, and various similarity metrics, including the mean absolute error (MAE), structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC). In our quantitative experimental results, the proposed method achieves the lowest MAE mean of 0.147, highest PSNR mean of 19.27, and NCC mean of 0.431 in the overall CT test dataset.In conclusion, both qualitative and quantitative results of synthetic CT validate that the proposed method can preserve higher similarity of structural information of the bone tissue of target CT than the baseline methods. Furthermore, the proposed method provides better HU intensity reconstruction for simulating the distribution of the CT modality. The experimental estimation indicates that the proposed method is worth further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄腾完成签到,获得积分10
刚刚
刚刚
聪明的行云完成签到 ,获得积分10
2秒前
hy完成签到,获得积分10
2秒前
2秒前
隐形曼青应助忧郁鸣凤采纳,获得10
2秒前
dmeng关注了科研通微信公众号
3秒前
3秒前
桐桐应助海棠依旧采纳,获得10
3秒前
传奇3应助科研混子采纳,获得10
4秒前
无花果应助upon采纳,获得10
4秒前
搞怪藏今完成签到 ,获得积分10
6秒前
琦诺应助菲菲爱学习采纳,获得10
6秒前
宋1234发布了新的文献求助10
6秒前
朴素靖琪完成签到,获得积分10
7秒前
lsc完成签到,获得积分20
7秒前
8秒前
科研混子完成签到,获得积分20
8秒前
chubby发布了新的文献求助10
9秒前
9秒前
weijian完成签到,获得积分10
10秒前
11秒前
lsc发布了新的文献求助20
11秒前
12秒前
liangliu完成签到 ,获得积分10
12秒前
dududu发布了新的文献求助10
13秒前
宋1234完成签到,获得积分10
14秒前
14秒前
16秒前
jiaolulu发布了新的文献求助10
16秒前
忧郁鸣凤发布了新的文献求助10
17秒前
建新发布了新的文献求助10
17秒前
科目三应助多情的映波采纳,获得10
17秒前
17秒前
不安流沙发布了新的文献求助10
18秒前
19秒前
好好学习发布了新的文献求助10
20秒前
打打应助Christina采纳,获得10
20秒前
20秒前
个性松发布了新的文献求助10
21秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214044
求助须知:如何正确求助?哪些是违规求助? 2862795
关于积分的说明 8135296
捐赠科研通 2529012
什么是DOI,文献DOI怎么找? 1363150
科研通“疑难数据库(出版商)”最低求助积分说明 643769
邀请新用户注册赠送积分活动 616200