FDCT: Fusion-Guided Dual-View Consistency Training for semi-supervised tissue segmentation on MRI

分割 计算机科学 人工智能 一致性(知识库) 模式识别(心理学) 尺度空间分割 计算机视觉 图像分割 编码器 医学影像学 操作系统
作者
Zailiang Chen,Yazheng Hou,Hui Liu,Ziyu Ye,Rongchang Zhao,Hailan Shen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:160: 106908-106908
标识
DOI:10.1016/j.compbiomed.2023.106908
摘要

Accurate tissue segmentation on MRI is important for physicians to make diagnosis and treatment for patients. However, most of the models are only designed for single-task tissue segmentation, and tend to lack generality to other MRI tissue segmentation tasks. Not only that, the acquisition of labels is time-consuming and laborious, which remains a challenge to be solved. In this study, we propose the universal Fusion-Guided Dual-View Consistency Training(FDCT) for semi-supervised tissue segmentation on MRI. It can obtain accurate and robust tissue segmentation for multiple tasks, and alleviates the problem of insufficient labeled data. Especially, for building bidirectional consistency, we feed dual-view images into a single-encoder dual-decoder structure to obtain view-level predictions, then put them into a fusion module to generate image-level pseudo-label. Moreover, to improve boundary segmentation quality, we propose the Soft-label Boundary Optimization Module(SBOM). We have conducted extensive experiments on three MRI datasets to evaluate the effectiveness of our method. Experimental results demonstrate that our method outperforms the state-of-the-art semi-supervised medical image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左左完成签到,获得积分10
1秒前
RSC完成签到,获得积分10
2秒前
2秒前
2秒前
小奔完成签到,获得积分10
3秒前
柠A完成签到,获得积分10
3秒前
忆仙姿完成签到,获得积分10
3秒前
4秒前
4秒前
玉玉应助靜心采纳,获得20
5秒前
aaiirrii发布了新的文献求助10
6秒前
健康的妙菱完成签到,获得积分10
6秒前
7秒前
Yy杨优秀完成签到,获得积分10
7秒前
tianmengkui完成签到,获得积分10
8秒前
Babe1934完成签到,获得积分10
8秒前
8秒前
无情听南发布了新的文献求助10
9秒前
9秒前
鱼鱼鱼完成签到,获得积分10
9秒前
顾矜应助max采纳,获得10
10秒前
10秒前
共享精神应助Eric采纳,获得10
11秒前
石石发布了新的文献求助30
11秒前
彩色的白秋完成签到,获得积分10
11秒前
桐桐应助巴豆有点妖采纳,获得10
12秒前
12秒前
汉堡包应助enen采纳,获得10
12秒前
13秒前
13秒前
个性的汲发布了新的文献求助10
15秒前
可乐完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
所发生的冯绍峰完成签到,获得积分10
16秒前
LJR完成签到,获得积分10
16秒前
16秒前
上官若男应助aaiirrii采纳,获得10
17秒前
yznfly应助yooloo采纳,获得30
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186