Advanced data post‐processing method for rapid identification and classification of the major triterpenoids of Alismatis rhizoma by ultra‐performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry

三萜类 化学 色谱法 串联质谱法 四极飞行时间 质谱法 立体化学
作者
Zhiheng Shu,Xiaoxing Wang,Peng-cheng Zhao,Ziting Li,Cailian Fan,Xiyang Tang,Zhihong Yao,Xin‐Sheng Yao,Yi Dai
出处
期刊:Phytochemical Analysis [Wiley]
卷期号:34 (5): 528-539 被引量:6
标识
DOI:10.1002/pca.3232
摘要

Alismatis rhizoma (AR), a distinguished diuretic traditional Chinese herbal medicine, is widely used for the treatment of diarrhea, edema, nephropathy, hyperlipidemia, and tumors in clinical settings. Most beneficial effects of AR are attributed to the major triterpenoids, whose contents are relatively high in AR. To date, only 25 triterpenoids in AR have been characterized by LC-MS because the low-mass diagnostic ions are hardly triggered in MS, impeding structural identification. Herein, we developed an advanced data post-processing method with abundant characteristic fragments (CFs) and neutral losses (NLs) for rapid identification and classification of the major triterpenoids in AR by UPLC-Q-TOF-MSE .We aimed to establish a systematic method for rapid identification and classification of the major triterpenoids of AR.UPLC-Q-TOF-MSE coupled with an advanced data post-processing method was established to characterize the major triterpenoids of AR. The abundant CFs and NLs of different types of triterpenoids were discovered and systematically summarized. The rapid identification and classification of the major triterpenoids of AR were realized by processing the data and comparing with information described in the literature.In this study, a total of 44 triterpenoids were identified from AR, including three potentially new compounds and 41 known ones, which were classified into six types.The newly established approach is suitable for the chemical profiling of the major triterpenoids in AR, which could provide useful information about chemical constituents and a basis for further exploration of its active ingredients in vivo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
真实的蜜蜂完成签到,获得积分10
刚刚
feng完成签到,获得积分10
1秒前
庞振发布了新的文献求助10
2秒前
zhuzhu发布了新的文献求助10
3秒前
滴滴答答发布了新的文献求助10
3秒前
灵巧墨镜完成签到,获得积分20
4秒前
5秒前
栀子_茉莉发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
9秒前
9秒前
殷勤的花瓣完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助aa采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
Jaho完成签到,获得积分10
11秒前
卓一曲发布了新的文献求助10
11秒前
失眠成协发布了新的文献求助20
12秒前
来了完成签到 ,获得积分10
13秒前
dudu完成签到,获得积分10
14秒前
14秒前
天雨流芳发布了新的文献求助10
14秒前
trap发布了新的文献求助10
14秒前
赘婿应助bitman采纳,获得10
15秒前
HELSEN完成签到 ,获得积分10
17秒前
adb完成签到,获得积分20
18秒前
orixero应助小白采纳,获得10
18秒前
鱼儿乐园完成签到 ,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
Jbiolover应助刘蕊采纳,获得10
19秒前
嘎嘣脆完成签到 ,获得积分10
20秒前
21秒前
王一帆发布了新的文献求助10
21秒前
谢小盟应助刘奇采纳,获得10
21秒前
风云鱼发布了新的文献求助10
22秒前
专注怜寒发布了新的文献求助10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400