Experimental Exploration of Multilevel Human Pain Assessment Using Blood Volume Pulse (BVP) Signals

人工智能 阿达布思 人工神经网络 分类器(UML) 模式识别(心理学) 计算机科学 脉搏(音乐) 机器学习 医学 电信 探测器
作者
Muhammad Umar Khan,Sumair Aziz,Niraj Hirachan,Calvin Joseph,Jasper Li,Raul Fernandez Rojas
出处
期刊:Sensors [MDPI AG]
卷期号:23 (8): 3980-3980 被引量:7
标识
DOI:10.3390/s23083980
摘要

Critically ill patients often lack cognitive or communicative functions, making it challenging to assess their pain levels using self-reporting mechanisms. There is an urgent need for an accurate system that can assess pain levels without relying on patient-reported information. Blood volume pulse (BVP) is a relatively unexplored physiological measure with the potential to assess pain levels. This study aims to develop an accurate pain intensity classification system based on BVP signals through comprehensive experimental analysis. Twenty-two healthy subjects participated in the study, in which we analyzed the classification performance of BVP signals for various pain intensities using time, frequency, and morphological features through fourteen different machine learning classifiers. Three experiments were conducted using leave-one-subject-out cross-validation to better examine the hidden signatures of BVP signals for pain level classification. The results of the experiments showed that BVP signals combined with machine learning can provide an objective and quantitative evaluation of pain levels in clinical settings. Specifically, no pain and high pain BVP signals were classified with 96.6% accuracy, 100% sensitivity, and 91.6% specificity using a combination of time, frequency, and morphological features with artificial neural networks (ANNs). The classification of no pain and low pain BVP signals yielded 83.3% accuracy using a combination of time and morphological features with the AdaBoost classifier. Finally, the multi-class experiment, which classified no pain, low pain, and high pain, achieved 69% overall accuracy using a combination of time and morphological features with ANN. In conclusion, the experimental results suggest that BVP signals combined with machine learning can offer an objective and reliable assessment of pain levels in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shaoshao完成签到,获得积分10
1秒前
1秒前
aiw发布了新的文献求助10
2秒前
foreverchoi完成签到,获得积分10
2秒前
VDC应助Maxpan采纳,获得30
2秒前
zho应助今夜属于雪花月采纳,获得10
2秒前
2秒前
36456657应助Egeria采纳,获得10
2秒前
嘟嘟许完成签到,获得积分10
3秒前
In完成签到,获得积分10
5秒前
5秒前
blUe发布了新的文献求助10
5秒前
6秒前
醉酒当歌云完成签到,获得积分10
6秒前
7秒前
8秒前
晚晚完成签到 ,获得积分10
9秒前
nxxxxxxxxxx发布了新的文献求助10
9秒前
jackie完成签到,获得积分20
9秒前
12秒前
可爱的函函应助aiw采纳,获得30
12秒前
In发布了新的文献求助10
12秒前
爱科研的杰杰桀桀完成签到 ,获得积分10
12秒前
12秒前
12秒前
Tyield发布了新的文献求助30
13秒前
14秒前
拉长的问晴完成签到,获得积分10
15秒前
hhhh发布了新的文献求助10
15秒前
16秒前
可乐应助neufy采纳,获得10
18秒前
18秒前
18秒前
zzz发布了新的文献求助10
18秒前
DCQ发布了新的文献求助10
18秒前
光头马润发布了新的文献求助10
19秒前
飞扬的刘海儿应助Clover04采纳,获得10
22秒前
FashionBoy应助yakkar采纳,获得10
23秒前
少夫人发布了新的文献求助10
23秒前
dong发布了新的文献求助10
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236198
求助须知:如何正确求助?哪些是违规求助? 2881908
关于积分的说明 8224330
捐赠科研通 2549909
什么是DOI,文献DOI怎么找? 1378738
科研通“疑难数据库(出版商)”最低求助积分说明 648465
邀请新用户注册赠送积分活动 623955