Experimental Exploration of Multilevel Human Pain Assessment Using Blood Volume Pulse (BVP) Signals

人工智能 阿达布思 人工神经网络 分类器(UML) 模式识别(心理学) 计算机科学 脉搏(音乐) 机器学习 医学 电信 探测器
作者
Muhammad Umar Khan,Sumair Aziz,Niraj Hirachan,Calvin Joseph,Jasper Li,Raul Fernandez Rojas
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (8): 3980-3980 被引量:7
标识
DOI:10.3390/s23083980
摘要

Critically ill patients often lack cognitive or communicative functions, making it challenging to assess their pain levels using self-reporting mechanisms. There is an urgent need for an accurate system that can assess pain levels without relying on patient-reported information. Blood volume pulse (BVP) is a relatively unexplored physiological measure with the potential to assess pain levels. This study aims to develop an accurate pain intensity classification system based on BVP signals through comprehensive experimental analysis. Twenty-two healthy subjects participated in the study, in which we analyzed the classification performance of BVP signals for various pain intensities using time, frequency, and morphological features through fourteen different machine learning classifiers. Three experiments were conducted using leave-one-subject-out cross-validation to better examine the hidden signatures of BVP signals for pain level classification. The results of the experiments showed that BVP signals combined with machine learning can provide an objective and quantitative evaluation of pain levels in clinical settings. Specifically, no pain and high pain BVP signals were classified with 96.6% accuracy, 100% sensitivity, and 91.6% specificity using a combination of time, frequency, and morphological features with artificial neural networks (ANNs). The classification of no pain and low pain BVP signals yielded 83.3% accuracy using a combination of time and morphological features with the AdaBoost classifier. Finally, the multi-class experiment, which classified no pain, low pain, and high pain, achieved 69% overall accuracy using a combination of time and morphological features with ANN. In conclusion, the experimental results suggest that BVP signals combined with machine learning can offer an objective and reliable assessment of pain levels in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zydaphne完成签到 ,获得积分10
1秒前
2秒前
2秒前
suiFeng完成签到,获得积分10
2秒前
OSASACB完成签到 ,获得积分10
2秒前
syfsyfsyf完成签到,获得积分20
3秒前
LZH完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
Yellue完成签到,获得积分10
4秒前
5秒前
饱满的鑫发布了新的文献求助10
5秒前
5秒前
LZH发布了新的文献求助10
5秒前
简单白风完成签到 ,获得积分10
5秒前
6秒前
6秒前
数学情缘发布了新的文献求助10
6秒前
右右发布了新的文献求助10
7秒前
7秒前
ouou发布了新的文献求助10
8秒前
8秒前
天真囧发布了新的文献求助10
9秒前
完美背包完成签到,获得积分10
9秒前
Tireastani应助hukun100采纳,获得30
9秒前
我先睡了发布了新的文献求助30
9秒前
萱1988发布了新的文献求助10
10秒前
大鲨鱼完成签到 ,获得积分10
10秒前
10秒前
zhangwj226完成签到,获得积分10
10秒前
小蘑菇应助12334采纳,获得10
11秒前
小蘑菇应助火龙果采纳,获得10
11秒前
kkk完成签到,获得积分10
11秒前
吗喽发布了新的文献求助10
11秒前
Inory007发布了新的文献求助10
12秒前
12秒前
13秒前
看我细节发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600