Deep Learning Algorithm Enables Cerebral Venous Thrombosis Detection With Routine Brain Magnetic Resonance Imaging

医学 磁共振成像 算法 静脉血栓形成 神经影像学 放射科 血栓形成 外科 计算机科学 精神科
作者
Xiaoxu Yang,Pengxin Yu,Haoyue Zhang,Rongguo Zhang,Yuehong Liu,Haoyuan Li,Penghui Sun,Xin Liu,Yu Wu,Xiuqin Jia,Jiangang Duan,Xunming Ji,Qi Yang
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:54 (5): 1357-1366 被引量:8
标识
DOI:10.1161/strokeaha.122.041520
摘要

Background: Cerebral venous thrombosis (CVT) is a rare cerebrovascular disease. Routine brain magnetic resonance imaging is commonly used to diagnose CVT. This study aimed to develop and evaluate a novel deep learning (DL) algorithm for detecting CVT using routine brain magnetic resonance imaging. Methods: Routine brain magnetic resonance imaging, including T1-weighted, T2-weighted, and fluid-attenuated inversion recovery images of patients suspected of CVT from April 2014 through December 2019 who were enrolled from a CVT registry, were collected. The images were divided into 2 data sets: a development set and a test set. Different DL algorithms were constructed in the development set using 5-fold cross-validation. Four radiologists with various levels of expertise independently read the images and performed diagnosis within the test set. The diagnostic performance on per-patient and per-segment diagnosis levels of the DL algorithms and radiologist’s assessment were evaluated and compared. Results: A total of 392 patients, including 294 patients with CVT (37±14 years, 151 women) and 98 patients without CVT (42±15 years, 65 women), were enrolled. Of these, 100 patients (50 CVT and 50 non-CVT) were randomly assigned to the test set, and the other 292 patients comprised the development set. In the test set, the optimal DL algorithm (multisequence multitask deep learning algorithm) achieved an area under the curve of 0.96, with a sensitivity of 96% (48/50) and a specificity of 88% (44/50) on per-patient diagnosis level, as well as a sensitivity of 88% (129/146) and a specificity of 80% (521/654) on per-segment diagnosis level. Compared with 4 radiologists, multisequence multitask deep learning algorithm showed higher sensitivity both on per-patient (all P <0.05) and per-segment diagnosis levels (all P <0.001). Conclusions: The CVT-detected DL algorithm herein improved diagnostic performance of routine brain magnetic resonance imaging, with high sensitivity and specificity, which provides a promising approach for detecting CVT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmmmm完成签到,获得积分10
刚刚
刚刚
刚刚
Orange应助你的男孩DD采纳,获得10
1秒前
2秒前
3秒前
Seoyeong发布了新的文献求助10
3秒前
阿喵完成签到,获得积分0
4秒前
於依白完成签到,获得积分10
5秒前
Hwalnut完成签到,获得积分10
5秒前
SJD完成签到,获得积分0
5秒前
顺遂发布了新的文献求助10
6秒前
lg20010419完成签到,获得积分10
7秒前
脑洞疼应助keke采纳,获得10
7秒前
狗头发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
11秒前
一一完成签到 ,获得积分10
11秒前
可爱的函函应助likes采纳,获得30
12秒前
13秒前
14秒前
逗号先生发布了新的文献求助10
14秒前
程程完成签到 ,获得积分10
14秒前
刘华银完成签到,获得积分10
16秒前
盐植物发布了新的文献求助10
16秒前
成就乘云发布了新的文献求助10
17秒前
17秒前
李健的小迷弟应助等风来采纳,获得10
17秒前
17秒前
18秒前
18秒前
学术星星完成签到,获得积分10
19秒前
开心便当发布了新的文献求助10
20秒前
21秒前
peace发布了新的文献求助10
23秒前
23秒前
笑点低千雁完成签到,获得积分10
23秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138292
求助须知:如何正确求助?哪些是违规求助? 2789301
关于积分的说明 7790796
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625971
版权声明 601065