自编码
邻接矩阵
特征学习
计算机科学
图形
理论计算机科学
图形能量
代表(政治)
人工智能
特征(语言学)
矩阵表示法
聚类分析
模式识别(心理学)
节点(物理)
拓扑(电路)
深度学习
电压图
数学
折线图
群(周期表)
政治学
法学
化学
有机化学
哲学
工程类
组合数学
政治
结构工程
语言学
作者
Jingci Li,Guangquan Lu,Zhengtian Wu,Fuqing Ling
标识
DOI:10.1016/j.ins.2023.02.092
摘要
Graph representation learning is a hot topic in non-Euclidean data in various domains, such as social networks, biological networks, etc. When some data labels are missing, graph autoencoder and graph variational autoencoder can perform outstanding abilities on node clustering or link prediction tasks. However, most existing graph representation learning ignores data's multi-modal features and takes the node features and graph structure features as one view. Besides, most graph autoencoders only reconstruct the node feature matrix or adjacency matrix, which does not fully use the hidden representation information. In this paper, we propose a multi-view representation model based on graph autoencoder, which can employ the global structure topology, latent local topology, and feature relative information. Meanwhile, we add another decoder to reconstruct the node feature matrix as an auxiliary task. In this way, the proposed framework can utilize the learned representation sufficiently. We validate the effectiveness of our framework on four datasets, and the experimental results demonstrate superior performance compared with other advanced frameworks.
科研通智能强力驱动
Strongly Powered by AbleSci AI