Machine learning- based lung disease diagnosis from CT images using Gabor features in Littlewood Paley empirical wavelet transform (LPEWT) and LLE

模式识别(心理学) 人工智能 主成分分析 判别式 支持向量机 Gabor变换 计算机科学 小波 数学 计算机视觉 滤波器(信号处理) 时频分析
作者
Rajneesh Kumar Patel,Manish Kashyap
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Taylor & Francis]
卷期号:11 (5): 1762-1776 被引量:5
标识
DOI:10.1080/21681163.2023.2187244
摘要

ABSTRACTABSTRACTThe term 'lung disease' covers a wide range of conditions that affect the lungs, including asthma, COPD, infections like the flu, pneumonia, tuberculosis, lung cancer, COVID, and numerous other breathing issues. Respiratory failure may result from several respiratory disorders. Recently, various methods have been proposed for lung disease detection, but they are not much more efficient. The proposed model has been tested on the COVID dataset. In this work, Littlewood-Paley Empirical Wavelet Transform (LPEWT) based technique is used to decompose images into their sub-bands. Using locally linear embedding (LLE), linear discriminative analysis (LDA), and principal component analysis (PCA), robust features are identified for lung disease detection after texture-based relevant Gabor features are extracted from images. LLE's outcomes inspire the development of new techniques. The Entropy, ROC, and Student's t-value methods provide ranks for robust features. Finally, LS-SVM is fed with t-value-based ranked features for classification using Morlet wavelet, Mexican-hat wavelet, and radial basis function. This model, which incorporated tenfold cross-validation, exhibited improved classification accuracy of 95.48%, specificity of 95.37%, sensitivity of 95.43%, and an F1 score of.95. The proposed diagnosis method can be a fast disease detection tool for imaging specialists using medical images.KEYWORDS: Machine learningGabormedical imagingEWTLLE AcknowledgementsI want to thank my Ph.D. supervisor and my parents.Disclosure statementNo potential conflict of interest was reported by the authors.Ethical approvalThere are no studies by the author using human subjects or animals in this article.Additional informationFundingThere was no outside funding for this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得30
1秒前
机智的涑完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Gia完成签到,获得积分20
2秒前
12334完成签到,获得积分10
4秒前
lzh_022完成签到,获得积分10
4秒前
不安的夜柳完成签到,获得积分10
4秒前
CodeCraft应助hammer采纳,获得10
5秒前
clcl发布了新的文献求助30
5秒前
自由的信仰完成签到,获得积分10
6秒前
qqqqq完成签到,获得积分10
6秒前
64658应助王鹏采纳,获得10
7秒前
学术骗子小刚完成签到,获得积分0
9秒前
852应助聪慧的鹤轩采纳,获得10
9秒前
clcl完成签到,获得积分10
10秒前
Dritsw应助yunyueqixun采纳,获得10
11秒前
正在获取昵称中...完成签到,获得积分10
11秒前
称心的绿竹完成签到,获得积分10
11秒前
昊昊昊昊发布了新的文献求助10
12秒前
12秒前
正直的沛凝完成签到,获得积分10
13秒前
Gia发布了新的文献求助10
15秒前
16秒前
infinity完成签到,获得积分20
18秒前
18秒前
木鱼发布了新的文献求助10
19秒前
20秒前
21秒前
魏你大爷完成签到,获得积分10
21秒前
22秒前
22秒前
无花果应助何hyy采纳,获得10
22秒前
嘻嘻发布了新的文献求助10
23秒前
Yyy发布了新的文献求助10
23秒前
DD应助糊涂的芷天采纳,获得10
23秒前
Zx完成签到 ,获得积分10
24秒前
24秒前
Vivian发布了新的文献求助10
25秒前
28秒前
WuFen完成签到 ,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965984
求助须知:如何正确求助?哪些是违规求助? 3511325
关于积分的说明 11157405
捐赠科研通 3245882
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804286