Knowledge distillation and attention mechanism analysis of traffic sign detection

交通标志 计算机科学 目标检测 人工智能 交通标志识别 集合(抽象数据类型) 机器学习 数据挖掘 符号(数学) 模式识别(心理学) 数学 数学分析 程序设计语言
作者
Pengwei Guan,Zihao Wang
标识
DOI:10.1109/cac57257.2022.10054779
摘要

Safe driving has been the core of the traditional traffic, it is also a top priority for the future of autonomous driving. In recent years, with the development of target detection, a large number of proven technique have entered the realm of driverless cars. Traffic sign detection has always been an important task of pattern recognition in the traffic field. After the rise of deep learning, it quickly replaced the traditional methods and became the mainstream technology path. Object detection algorithms represented by RCNN family and YOLO series have gained extensive attention and applications. These algorithms are difficult to strike a good balance between speed and quality, especially when deployed on mobile platforms with less ability for calculate. In this paper, YOLOv5 algorithm is selected as the basis for knowledge distillation and multiple attention modes are used to improve the accuracy of the algorithm, and sparse training is used to further reduce the size of the model to achieve ultra-lightweight. The TT100K data set was used for training and verification results. However, the 45 types of traffic signs in this data set do not have the most important signal light data in traffic indication,ours made a large amount of such data to expand TT100K and named it as ETT100K data set.Experimental results show that the addition of attention to YOLOv5 can not effectively improve the model accuracy compared with knowledge distillation, but knowledge distillation can significantly improve the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助lipanpan采纳,获得10
2秒前
风趣的碧琴完成签到 ,获得积分10
2秒前
牵着猴子晒月亮完成签到,获得积分10
4秒前
Hilda007应助PhD采纳,获得10
4秒前
5秒前
6秒前
7秒前
8秒前
8秒前
唯梦发布了新的文献求助10
10秒前
汉堡包应助潇洒映冬采纳,获得10
12秒前
yorktang发布了新的文献求助10
14秒前
搜集达人应助科研小白采纳,获得10
14秒前
嘿嘿完成签到,获得积分10
15秒前
玻色子完成签到,获得积分10
15秒前
15秒前
15秒前
十三驳回了英姑应助
15秒前
jyy完成签到 ,获得积分10
16秒前
18秒前
z549326399完成签到,获得积分10
18秒前
18秒前
自由冬亦完成签到,获得积分10
19秒前
liu发布了新的文献求助10
19秒前
WSQ发布了新的文献求助10
19秒前
20秒前
jason发布了新的文献求助10
22秒前
玻色子发布了新的文献求助10
22秒前
wangzhen完成签到 ,获得积分10
22秒前
moonlight完成签到,获得积分10
23秒前
科研通AI2S应助林药师采纳,获得10
24秒前
25秒前
群山发布了新的文献求助10
25秒前
25秒前
Ava应助lxy采纳,获得10
25秒前
李健的粉丝团团长应助liu采纳,获得10
26秒前
WSQ完成签到,获得积分20
29秒前
机智难破完成签到,获得积分10
30秒前
30秒前
深情安青应助CC采纳,获得10
31秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339290
求助须知:如何正确求助?哪些是违规求助? 4476138
关于积分的说明 13930647
捐赠科研通 4371604
什么是DOI,文献DOI怎么找? 2401978
邀请新用户注册赠送积分活动 1394933
关于科研通互助平台的介绍 1366848