Knowledge distillation and attention mechanism analysis of traffic sign detection

交通标志 计算机科学 目标检测 人工智能 交通标志识别 集合(抽象数据类型) 机器学习 数据挖掘 符号(数学) 模式识别(心理学) 数学 数学分析 程序设计语言
作者
Pengwei Guan,Zihao Wang
标识
DOI:10.1109/cac57257.2022.10054779
摘要

Safe driving has been the core of the traditional traffic, it is also a top priority for the future of autonomous driving. In recent years, with the development of target detection, a large number of proven technique have entered the realm of driverless cars. Traffic sign detection has always been an important task of pattern recognition in the traffic field. After the rise of deep learning, it quickly replaced the traditional methods and became the mainstream technology path. Object detection algorithms represented by RCNN family and YOLO series have gained extensive attention and applications. These algorithms are difficult to strike a good balance between speed and quality, especially when deployed on mobile platforms with less ability for calculate. In this paper, YOLOv5 algorithm is selected as the basis for knowledge distillation and multiple attention modes are used to improve the accuracy of the algorithm, and sparse training is used to further reduce the size of the model to achieve ultra-lightweight. The TT100K data set was used for training and verification results. However, the 45 types of traffic signs in this data set do not have the most important signal light data in traffic indication,ours made a large amount of such data to expand TT100K and named it as ETT100K data set.Experimental results show that the addition of attention to YOLOv5 can not effectively improve the model accuracy compared with knowledge distillation, but knowledge distillation can significantly improve the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研同路人完成签到,获得积分0
刚刚
Sherry完成签到,获得积分10
刚刚
林狗发布了新的文献求助10
刚刚
2秒前
3秒前
JIA完成签到,获得积分10
4秒前
JaneBing完成签到,获得积分10
4秒前
paparazzi221发布了新的文献求助10
5秒前
野子发布了新的文献求助10
5秒前
xiaoli发布了新的文献求助10
6秒前
高ww发布了新的文献求助10
8秒前
lelelele完成签到,获得积分20
8秒前
创新完成签到 ,获得积分10
9秒前
zbb完成签到,获得积分10
9秒前
10秒前
zxb关闭了zxb文献求助
10秒前
情怀应助机灵绣连采纳,获得10
10秒前
11秒前
缓慢凝梦完成签到,获得积分10
11秒前
lelelele发布了新的文献求助10
12秒前
Hello应助司马白晴采纳,获得10
13秒前
SciGPT应助野子采纳,获得10
14秒前
Kins完成签到,获得积分10
14秒前
淡淡的寄灵完成签到,获得积分10
14秒前
悦子完成签到,获得积分10
15秒前
15秒前
清脆大门完成签到,获得积分10
15秒前
缓慢凝梦发布了新的文献求助10
15秒前
16秒前
洪伟发布了新的文献求助10
16秒前
橘子树发布了新的文献求助10
16秒前
hulin_zjxu发布了新的文献求助10
17秒前
123发布了新的文献求助10
17秒前
Rachel发布了新的文献求助10
18秒前
DK-kuz发布了新的文献求助10
20秒前
野子完成签到,获得积分10
20秒前
22秒前
MOMO完成签到,获得积分10
23秒前
23秒前
十七应助zxb采纳,获得10
23秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3414753
求助须知:如何正确求助?哪些是违规求助? 3016718
关于积分的说明 8877915
捐赠科研通 2704457
什么是DOI,文献DOI怎么找? 1482748
科研通“疑难数据库(出版商)”最低求助积分说明 685557
邀请新用户注册赠送积分活动 680375