Knowledge distillation and attention mechanism analysis of traffic sign detection

交通标志 计算机科学 目标检测 人工智能 交通标志识别 集合(抽象数据类型) 机器学习 数据挖掘 符号(数学) 模式识别(心理学) 数学 数学分析 程序设计语言
作者
Pengwei Guan,Zihao Wang
标识
DOI:10.1109/cac57257.2022.10054779
摘要

Safe driving has been the core of the traditional traffic, it is also a top priority for the future of autonomous driving. In recent years, with the development of target detection, a large number of proven technique have entered the realm of driverless cars. Traffic sign detection has always been an important task of pattern recognition in the traffic field. After the rise of deep learning, it quickly replaced the traditional methods and became the mainstream technology path. Object detection algorithms represented by RCNN family and YOLO series have gained extensive attention and applications. These algorithms are difficult to strike a good balance between speed and quality, especially when deployed on mobile platforms with less ability for calculate. In this paper, YOLOv5 algorithm is selected as the basis for knowledge distillation and multiple attention modes are used to improve the accuracy of the algorithm, and sparse training is used to further reduce the size of the model to achieve ultra-lightweight. The TT100K data set was used for training and verification results. However, the 45 types of traffic signs in this data set do not have the most important signal light data in traffic indication,ours made a large amount of such data to expand TT100K and named it as ETT100K data set.Experimental results show that the addition of attention to YOLOv5 can not effectively improve the model accuracy compared with knowledge distillation, but knowledge distillation can significantly improve the results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
鲸鱼打滚发布了新的文献求助10
1秒前
科研通AI2S应助cui18采纳,获得10
1秒前
Changfh完成签到 ,获得积分10
1秒前
2秒前
2秒前
汉堡包应助浪费青春传奇采纳,获得10
2秒前
2秒前
薯条发布了新的文献求助10
3秒前
3秒前
deer发布了新的文献求助10
3秒前
Bertha完成签到,获得积分10
3秒前
Novoa发布了新的文献求助10
3秒前
3秒前
万能图书馆应助ZXC采纳,获得10
3秒前
4秒前
搜集达人应助优美的唇彩采纳,获得10
5秒前
cx完成签到 ,获得积分10
5秒前
kai9712应助Ting采纳,获得20
6秒前
噜lu发布了新的文献求助10
6秒前
无花果应助wch采纳,获得10
7秒前
Hello应助冷静的慕青采纳,获得10
7秒前
善学以致用应助薯条采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
肉肉发布了新的文献求助10
8秒前
YUE发布了新的文献求助10
9秒前
Judy发布了新的文献求助10
10秒前
刘晚柠完成签到,获得积分10
10秒前
panda完成签到,获得积分10
10秒前
11秒前
11秒前
小二郎应助ee采纳,获得10
11秒前
gapper发布了新的文献求助10
12秒前
12秒前
wz完成签到,获得积分10
12秒前
Guide_steps完成签到 ,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082