Knowledge distillation and attention mechanism analysis of traffic sign detection

交通标志 计算机科学 目标检测 人工智能 交通标志识别 集合(抽象数据类型) 机器学习 数据挖掘 符号(数学) 模式识别(心理学) 数学 数学分析 程序设计语言
作者
Pengwei Guan,Zihao Wang
标识
DOI:10.1109/cac57257.2022.10054779
摘要

Safe driving has been the core of the traditional traffic, it is also a top priority for the future of autonomous driving. In recent years, with the development of target detection, a large number of proven technique have entered the realm of driverless cars. Traffic sign detection has always been an important task of pattern recognition in the traffic field. After the rise of deep learning, it quickly replaced the traditional methods and became the mainstream technology path. Object detection algorithms represented by RCNN family and YOLO series have gained extensive attention and applications. These algorithms are difficult to strike a good balance between speed and quality, especially when deployed on mobile platforms with less ability for calculate. In this paper, YOLOv5 algorithm is selected as the basis for knowledge distillation and multiple attention modes are used to improve the accuracy of the algorithm, and sparse training is used to further reduce the size of the model to achieve ultra-lightweight. The TT100K data set was used for training and verification results. However, the 45 types of traffic signs in this data set do not have the most important signal light data in traffic indication,ours made a large amount of such data to expand TT100K and named it as ETT100K data set.Experimental results show that the addition of attention to YOLOv5 can not effectively improve the model accuracy compared with knowledge distillation, but knowledge distillation can significantly improve the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anyilin发布了新的文献求助10
刚刚
H恺发布了新的文献求助30
刚刚
zhc发布了新的文献求助10
刚刚
1111完成签到,获得积分10
刚刚
平淡星星完成签到,获得积分10
刚刚
卢雨生发布了新的文献求助10
1秒前
mk完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
哈哈哈发布了新的文献求助10
2秒前
wuyuzegang应助lyric采纳,获得20
3秒前
3秒前
范灵玥发布了新的文献求助10
3秒前
4秒前
wwb完成签到,获得积分10
4秒前
YIXIN发布了新的文献求助10
4秒前
4秒前
顾矜应助无私追命采纳,获得10
5秒前
汉堡包应助流北爷采纳,获得10
5秒前
许容发布了新的文献求助20
6秒前
晨晓完成签到,获得积分10
6秒前
呆呆完成签到,获得积分10
6秒前
6秒前
飞飞wolf完成签到,获得积分10
7秒前
冷傲熊猫发布了新的文献求助50
7秒前
卢雨生完成签到,获得积分20
7秒前
淡淡的忆彤完成签到,获得积分10
7秒前
7秒前
7秒前
Lucas应助bb采纳,获得10
8秒前
热心市民小红花应助Yuan88采纳,获得30
8秒前
小迪迦奥特曼完成签到,获得积分10
8秒前
百里城发布了新的文献求助10
8秒前
魔幻的觅珍完成签到,获得积分10
8秒前
anyilin完成签到,获得积分10
8秒前
柯沸发布了新的文献求助10
9秒前
风筝发布了新的文献求助10
9秒前
脑洞疼应助Yacoob采纳,获得10
10秒前
小欢完成签到,获得积分10
10秒前
于梦强完成签到 ,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951344
求助须知:如何正确求助?哪些是违规求助? 3496706
关于积分的说明 11083953
捐赠科研通 3227150
什么是DOI,文献DOI怎么找? 1784304
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801102