已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Scan2Drawing: Use of Deep Learning for As-Built Model Landscape Architecture

人工智能 计算机科学 仰角(弹道) 点云 分割 计算机视觉 基本事实 管道(软件) 激光雷达 交叉口(航空) 深度学习 模式识别(心理学) 遥感 地理 数学 地图学 几何学 程序设计语言
作者
Sisi Han,Yuhan Jiang,Yilei Huang,Mingzhu Wang,Yong Bai,Andrea Spool-White
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:149 (5) 被引量:4
标识
DOI:10.1061/jcemd4.coeng-13077
摘要

This paper presents an innovative and fully automatic solution of generating as-built computer-aided design (CAD) drawings for landscape architecture (LA) with three dimensional (3D) reality data scanned via drone, camera, and LiDAR. To start with the full pipeline, 2D feature images of ortho-image and elevation-map are converted from the reality data. A deep learning-based light convolutional encoder–decoder was developed, and compared with U-Net (a binary segmentation model), for image pixelwise segmentation to realize automatic site surface classification, object detection, and ground control point identification. Then, the proposed elevation clustering and segmentation algorithms can automatically extract contours for each instance from each surface or object category. Experimental results showed that the developed light model achieved comparable results with U-Net in landing pad segmentation with average intersection over union (IoU) of 0.900 versus 0.969. With the proposed data augmentation strategy, the light model had a testing pixel accuracy of 0.9764 and mean IoU of 0.8922 in the six-class segmentation testing task. Additionally, for surfaces with continuous elevation changes (i.e., ground), the developed algorithm created contours only have an average elevation difference of 1.68 cm compared to dense point clouds using drones and image-based reality data. For objects with discrete elevation changes (i.e., stair treads), the generated contours accurately represent objects’ elevations with zero difference using light detection and ranging (LiDAR) data. The contribution of this research is to develop algorithms that automatically transfer the scanned LA scenes to contours with real-world coordinates to create as-built computer-aided design (CAD) drawings, which can further assist building information modeling (BIM) model creation and inspect the scanned LA scenes with augmented reality. The optimized parameters for the developed algorithms are analyzed and recommended for future applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助wuzhizhiya采纳,获得10
3秒前
小心胖虎发布了新的文献求助10
5秒前
生动板栗完成签到,获得积分10
6秒前
7秒前
8秒前
郑泽森发布了新的文献求助10
10秒前
juanjuan应助阅读采纳,获得50
14秒前
受伤的老头完成签到,获得积分10
14秒前
加菲丰丰举报聪明的绝悟求助涉嫌违规
19秒前
科目三应助NMZN采纳,获得10
21秒前
TAD完成签到,获得积分10
21秒前
22秒前
22秒前
华仔应助魏行方采纳,获得10
23秒前
加菲丰丰应助称心乐枫采纳,获得20
24秒前
25秒前
27秒前
28秒前
31秒前
闪闪寄凡完成签到,获得积分20
31秒前
31秒前
jovrtic发布了新的文献求助10
32秒前
JamesPei应助Hayat采纳,获得10
32秒前
科研通AI2S应助假面绅士采纳,获得10
33秒前
wangermazi发布了新的文献求助10
34秒前
拂晓发布了新的文献求助10
35秒前
Ttttt发布了新的文献求助10
35秒前
今后应助细心怜寒采纳,获得10
37秒前
38秒前
39秒前
研友_Z7XoR8发布了新的文献求助10
39秒前
40秒前
41秒前
NMZN发布了新的文献求助10
42秒前
44秒前
SZS发布了新的文献求助10
44秒前
勤恳幻然发布了新的文献求助10
45秒前
46秒前
soulcard发布了新的文献求助10
46秒前
peanuttt完成签到 ,获得积分10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133652
求助须知:如何正确求助?哪些是违规求助? 2784626
关于积分的说明 7767874
捐赠科研通 2439828
什么是DOI,文献DOI怎么找? 1297069
科研通“疑难数据库(出版商)”最低求助积分说明 624840
版权声明 600791