亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Scan2Drawing: Use of Deep Learning for As-Built Model Landscape Architecture

人工智能 计算机科学 仰角(弹道) 点云 分割 计算机视觉 基本事实 管道(软件) 激光雷达 交叉口(航空) 深度学习 模式识别(心理学) 遥感 地理 数学 地图学 几何学 程序设计语言
作者
Sisi Han,Yuhan Jiang,Yilei Huang,Mingzhu Wang,Yong Bai,Andrea Spool-White
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:149 (5) 被引量:4
标识
DOI:10.1061/jcemd4.coeng-13077
摘要

This paper presents an innovative and fully automatic solution of generating as-built computer-aided design (CAD) drawings for landscape architecture (LA) with three dimensional (3D) reality data scanned via drone, camera, and LiDAR. To start with the full pipeline, 2D feature images of ortho-image and elevation-map are converted from the reality data. A deep learning-based light convolutional encoder–decoder was developed, and compared with U-Net (a binary segmentation model), for image pixelwise segmentation to realize automatic site surface classification, object detection, and ground control point identification. Then, the proposed elevation clustering and segmentation algorithms can automatically extract contours for each instance from each surface or object category. Experimental results showed that the developed light model achieved comparable results with U-Net in landing pad segmentation with average intersection over union (IoU) of 0.900 versus 0.969. With the proposed data augmentation strategy, the light model had a testing pixel accuracy of 0.9764 and mean IoU of 0.8922 in the six-class segmentation testing task. Additionally, for surfaces with continuous elevation changes (i.e., ground), the developed algorithm created contours only have an average elevation difference of 1.68 cm compared to dense point clouds using drones and image-based reality data. For objects with discrete elevation changes (i.e., stair treads), the generated contours accurately represent objects’ elevations with zero difference using light detection and ranging (LiDAR) data. The contribution of this research is to develop algorithms that automatically transfer the scanned LA scenes to contours with real-world coordinates to create as-built computer-aided design (CAD) drawings, which can further assist building information modeling (BIM) model creation and inspect the scanned LA scenes with augmented reality. The optimized parameters for the developed algorithms are analyzed and recommended for future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nanali19完成签到,获得积分10
6秒前
万能图书馆应助sofardli采纳,获得10
24秒前
33秒前
量子星尘发布了新的文献求助10
47秒前
曦麟完成签到 ,获得积分10
57秒前
57秒前
斯文败类应助科研通管家采纳,获得10
57秒前
1分钟前
Lin发布了新的文献求助10
1分钟前
1分钟前
SCINEXUS完成签到,获得积分0
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
老迟到的梦旋完成签到 ,获得积分10
2分钟前
2分钟前
负责以山完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
cc应助科研通管家采纳,获得10
2分钟前
一只小锦鲤完成签到 ,获得积分10
3分钟前
西山菩提完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助20
4分钟前
lixuebin完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
sujingbo发布了新的文献求助100
4分钟前
sofardli发布了新的文献求助10
4分钟前
4分钟前
charliechen完成签到 ,获得积分10
5分钟前
sofardli完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
碗碗豆喵完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234124
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264