SERS-based molecularly imprinted polymer sensor for highly sensitive norfloxacin detection

分子印迹聚合物 检出限 诺氟沙星 分子印迹 最大残留限量 胶体金 化学 拉曼光谱 色谱法 自来水 欧洲联盟 抗生素 纳米颗粒 分析化学(期刊) 材料科学 选择性 纳米技术 环丙沙星 有机化学 农药残留 农学 生物化学 生物 环境工程 经济政策 催化作用 杀虫剂 业务 工程类 物理 光学
作者
Nazia Tarannum,Shahjadi Khatoon,Akanksha Yadav,Anil Yadav
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:119: 105281-105281 被引量:8
标识
DOI:10.1016/j.jfca.2023.105281
摘要

The overuse and misuse of antibiotics in the environment and food animals have created worsening issues against bacteria exposure to the antibiotics. Due to the high resistance of antibiotics in living beings, the fast and effective sensing of antibiotics and their residue in real samples is a requirement of the time. This article describes an ultra-detection of norfloxacin (NOR) antibiotic in milk and water samples using SERS (surface-enhanced Raman scattering) based molecularly imprinted polymer (MIP) coupled by gold nanoparticle (AuNP). To facilitate the collection of SERS spectra, AuNPs were reduced by chitosan and combined with MIP, denoted as CS/AuMIP, for the adsorption of NOR with high sensitivity and selectivity, i.e. down to the nanomolar level. The linear regression model in water and milk samples show peaks at Raman shifts 1418 cm−1 and 1400 cm−1, respectively. A satisfactory linear fit was seen with R2 = 0.95 and R2 = 0.97, respectively. The limit of detection (LOD) was calculated as 2.5 × 10−11 M based on band intensity. In various types of foods, the LOD recorded by CS/AuMIP fabricated film for NOR is lower than that stipulated by European Union regulation (8.0 ×10−9 – 4.0 ×10−8 M). The binding constant of CS/AuMIP for NOR in milk and tap water sample is 4 × 104 M−1, and 8.5 × 103 M−1, respectively. The CS/AuMIP film was optimised, characterised, and tested on spiked water and milk samples. The results of this study displayed that synthesized MIP has a lot of potential for separating and applicable for detecting trace amounts of antibiotics and their residues in environmental samples such as tap water and milk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yufeng完成签到 ,获得积分10
刚刚
刚刚
Jenny完成签到,获得积分10
刚刚
刚刚
科研小小小白完成签到,获得积分10
1秒前
1秒前
小橙子完成签到 ,获得积分10
2秒前
3秒前
3秒前
福娃发布了新的文献求助10
3秒前
4秒前
达斯维完成签到,获得积分10
4秒前
浪迹天涯发布了新的文献求助10
4秒前
今后应助杜嘟嘟采纳,获得30
4秒前
5秒前
5秒前
清圆527完成签到,获得积分10
5秒前
JamesPei应助Zhong采纳,获得10
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
Emma完成签到 ,获得积分10
8秒前
8秒前
8秒前
清新的问枫完成签到,获得积分10
9秒前
9秒前
在水一方应助大方小白采纳,获得10
9秒前
阿凡达完成签到,获得积分10
9秒前
神勇的雅香应助大方小白采纳,获得10
9秒前
彬彬发布了新的文献求助10
9秒前
刘鹏宇发布了新的文献求助10
9秒前
斯文败类应助Stormi采纳,获得10
10秒前
11秒前
11秒前
木子发布了新的文献求助10
12秒前
yuyuyu完成签到 ,获得积分10
12秒前
12秒前
choi完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740