CBCT-Based Synthetic CT Image Generation Using Conditional Denoising Diffusion Probabilistic Model

图像去噪 降噪 概率逻辑 计算机科学 人工智能 计算机视觉 模式识别(心理学)
作者
Junbo Peng,Richard L. J. Qiu,Jacob Wynne,Chih‐Wei Chang,Shaoyan Pan,Tonghe Wang,Justin Roper,Tian Liu,Pretesh Patel,David S. Yu,Xiaofeng Yang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2303.02649
摘要

Background: Daily or weekly cone-beam computed tomography (CBCT) scans are commonly used for accurate patient positioning during the image-guided radiotherapy (IGRT) process, making it an ideal option for adaptive radiotherapy (ART) replanning. However, the presence of severe artifacts and inaccurate Hounsfield unit (HU) values prevent its use for quantitative applications such as organ segmentation and dose calculation. To enable the clinical practice of online ART, it is crucial to obtain CBCT scans with a quality comparable to that of a CT scan. Purpose: This work aims to develop a conditional diffusion model to perform image translation from the CBCT to the CT domain for the image quality improvement of CBCT. Methods: The proposed method is a conditional denoising diffusion probabilistic model (DDPM) that utilizes a time-embedded U-net architecture with residual and attention blocks to gradually transform standard Gaussian noise to the target CT distribution conditioned on the CBCT. The model was trained on deformed planning CT (dpCT) and CBCT image pairs, and its feasibility was verified in brain patient study and head-and-neck (H&N) patient study. The performance of the proposed algorithm was evaluated using mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and normalized cross-correlation (NCC) metrics on generated synthetic CT (sCT) samples. The proposed method was also compared to four other diffusion model-based sCT generation methods. Conclusions: The proposed conditional DDPM method can generate sCT from CBCT with accurate HU numbers and reduced artifacts, enabling accurate CBCT-based organ segmentation and dose calculation for online ART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助木木采纳,获得10
2秒前
汉堡包应助中和皇极采纳,获得10
2秒前
2秒前
2秒前
菜热热发布了新的文献求助10
3秒前
3秒前
4秒前
LWJ发布了新的文献求助30
5秒前
典雅怀曼完成签到,获得积分20
5秒前
6秒前
zho发布了新的文献求助10
7秒前
赘婿应助调皮老头采纳,获得10
7秒前
7秒前
cure完成签到,获得积分10
7秒前
MYMELODY完成签到,获得积分10
8秒前
LVVVB完成签到,获得积分10
8秒前
猪猪hero发布了新的文献求助10
8秒前
hohokuz完成签到,获得积分10
9秒前
Silver发布了新的文献求助30
9秒前
余木发布了新的文献求助30
9秒前
菜热热完成签到,获得积分10
9秒前
小马甲应助清爽猕猴桃采纳,获得10
10秒前
星辰大海应助小梦采纳,获得10
11秒前
yangyangyang完成签到,获得积分0
13秒前
杜熙发布了新的文献求助30
13秒前
15秒前
15秒前
兴奋千兰完成签到,获得积分10
16秒前
科研通AI5应助wjw采纳,获得10
17秒前
典雅怀曼关注了科研通微信公众号
19秒前
星辰大海应助包容春天采纳,获得10
19秒前
中和皇极发布了新的文献求助10
21秒前
鸭梨发布了新的文献求助10
22秒前
Silver完成签到,获得积分10
24秒前
余木完成签到,获得积分10
26秒前
27秒前
CC完成签到,获得积分10
28秒前
32秒前
李十七发布了新的文献求助10
32秒前
遥不可及发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425