CBCT-Based Synthetic CT Image Generation Using Conditional Denoising Diffusion Probabilistic Model

图像去噪 降噪 概率逻辑 计算机科学 人工智能 计算机视觉 模式识别(心理学)
作者
Junbo Peng,Richard L. J. Qiu,Jacob Wynne,Chih‐Wei Chang,Shaoyan Pan,Tonghe Wang,Justin Roper,Tian Liu,Pretesh Patel,David S. Yu,Xiaofeng Yang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2303.02649
摘要

Background: Daily or weekly cone-beam computed tomography (CBCT) scans are commonly used for accurate patient positioning during the image-guided radiotherapy (IGRT) process, making it an ideal option for adaptive radiotherapy (ART) replanning. However, the presence of severe artifacts and inaccurate Hounsfield unit (HU) values prevent its use for quantitative applications such as organ segmentation and dose calculation. To enable the clinical practice of online ART, it is crucial to obtain CBCT scans with a quality comparable to that of a CT scan. Purpose: This work aims to develop a conditional diffusion model to perform image translation from the CBCT to the CT domain for the image quality improvement of CBCT. Methods: The proposed method is a conditional denoising diffusion probabilistic model (DDPM) that utilizes a time-embedded U-net architecture with residual and attention blocks to gradually transform standard Gaussian noise to the target CT distribution conditioned on the CBCT. The model was trained on deformed planning CT (dpCT) and CBCT image pairs, and its feasibility was verified in brain patient study and head-and-neck (H&N) patient study. The performance of the proposed algorithm was evaluated using mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and normalized cross-correlation (NCC) metrics on generated synthetic CT (sCT) samples. The proposed method was also compared to four other diffusion model-based sCT generation methods. Conclusions: The proposed conditional DDPM method can generate sCT from CBCT with accurate HU numbers and reduced artifacts, enabling accurate CBCT-based organ segmentation and dose calculation for online ART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚琳发布了新的文献求助10
1秒前
Fancy发布了新的文献求助10
1秒前
不配.应助zxvcbnm采纳,获得10
1秒前
生尽证提发布了新的文献求助10
1秒前
星星完成签到,获得积分20
2秒前
3秒前
3秒前
专一的惜海完成签到,获得积分10
4秒前
伏波完成签到,获得积分10
4秒前
4秒前
nayomi完成签到,获得积分10
4秒前
星辰大海应助vine采纳,获得10
8秒前
感谢受伤的电话转发科研通微信,获得积分50
10秒前
Jasper应助罗博超采纳,获得10
10秒前
10秒前
11秒前
14秒前
14秒前
感谢是猪不是猫转发科研通微信,获得积分50
14秒前
xiaomaidou发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
17秒前
lj完成签到,获得积分10
19秒前
kejun发布了新的文献求助10
19秒前
科研通AI2S应助chris采纳,获得10
19秒前
Ava应助Junt采纳,获得10
20秒前
jiang发布了新的文献求助10
20秒前
吴正言发布了新的文献求助10
20秒前
荭筱葒发布了新的文献求助10
21秒前
曾泳钧完成签到,获得积分10
21秒前
21秒前
爱吃冬瓜发布了新的文献求助10
22秒前
不配.应助俏皮的绝山采纳,获得20
22秒前
Hello应助zzzeeee采纳,获得10
23秒前
24秒前
Dawn完成签到,获得积分10
24秒前
感谢虞美人转发科研通微信,获得积分50
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3132768
求助须知:如何正确求助?哪些是违规求助? 2783885
关于积分的说明 7764141
捐赠科研通 2439062
什么是DOI,文献DOI怎么找? 1296626
科研通“疑难数据库(出版商)”最低求助积分说明 624651
版权声明 600751