Machine Learning Model to Predict Diagnosis of Mild Cognitive Impairment by Using Radiomic and Amyloid Brain PET

医学 人工智能 认知障碍 Pet成像 淀粉样蛋白(真菌学) 认知 核医学 正电子发射断层摄影术 医学物理学 病理 计算机科学 精神科
作者
Andrea Ciarmiello,Elisabetta Giovannini,Sara Pastorino,O. Ferrando,F. Foppiano,Antonio Mannironi,Antonio Tartaglione,Giampiero Giovacchini
出处
期刊:Clinical Nuclear Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (1): 1-7 被引量:7
标识
DOI:10.1097/rlu.0000000000004433
摘要

Purpose The study aimed to develop a deep learning model for predicting amnestic mild cognitive impairment (aMCI) diagnosis using radiomic features and amyloid brain PET. Patients and Methods Subjects (n = 328) from the Alzheimer’s Disease Neuroimaging Initiative database and the EudraCT 2015-001184-39 trial (159 males, 169 females), with a mean age of 72 ± 7.4 years, underwent PET/CT with 18 F-florbetaben. The study cohort consisted of normal controls (n = 149) and subjects with aMCI (n = 179). Thirteen gray-level run-length matrix radiomic features and amyloid loads were extracted from 27 cortical brain areas. The least absolute shrinkage and selection operator regression was used to select features with the highest predictive value. A feed-forward neural multilayer network was trained, validated, and tested on 70%, 15%, and 15% of the sample, respectively. Accuracy, precision, F1-score, and area under the curve were used to assess model performance. SUV performance in predicting the diagnosis of aMCI was also assessed and compared with that obtained from the machine learning model. Results The machine learning model achieved an area under the receiver operating characteristic curve of 90% (95% confidence interval, 89.4–90.4) on the test set, with 80% and 78% for accuracy and F1-score, respectively. The deep learning model outperformed SUV performance (area under the curve, 71%; 95% confidence interval, 69.7–71.4; 57% accuracy, 48% F1-score). Conclusions Using radiomic and amyloid PET load, the machine learning model identified MCI subjects with 84% specificity at 81% sensitivity. These findings show that a deep learning algorithm based on radiomic data and amyloid load obtained from brain PET images improves the prediction of MCI diagnosis compared with SUV alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武雪兰完成签到,获得积分10
1秒前
may完成签到 ,获得积分10
1秒前
3秒前
领导范儿应助wwww采纳,获得10
4秒前
热心鱼完成签到,获得积分10
5秒前
Hey发布了新的文献求助10
5秒前
Merry8558完成签到,获得积分10
6秒前
coc发布了新的文献求助10
7秒前
NexusExplorer应助Ico采纳,获得50
7秒前
量子星尘发布了新的文献求助10
8秒前
科目三应助felinus采纳,获得10
8秒前
庸俗完成签到,获得积分10
8秒前
科研通AI6应助YYYYZ采纳,获得10
9秒前
11秒前
XIAOJU_U完成签到 ,获得积分10
12秒前
热心鱼发布了新的文献求助10
12秒前
CipherSage应助Quhang采纳,获得10
12秒前
机智的天宇完成签到,获得积分10
13秒前
14秒前
沧沧完成签到,获得积分10
14秒前
14秒前
dann完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
17秒前
17秒前
吱唔朱完成签到,获得积分20
17秒前
17秒前
小透明发布了新的文献求助150
18秒前
19秒前
19秒前
20秒前
20秒前
20秒前
20秒前
20秒前
zbzfp发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573