Machine Learning Model to Predict Diagnosis of Mild Cognitive Impairment by Using Radiomic and Amyloid Brain PET

医学 人工智能 认知障碍 Pet成像 淀粉样蛋白(真菌学) 认知 核医学 正电子发射断层摄影术 医学物理学 病理 计算机科学 精神科
作者
Andrea Ciarmiello,Elisabetta Giovannini,Sara Pastorino,O. Ferrando,F. Foppiano,Antonio Mannironi,Antonio Tartaglione,Giampiero Giovacchini
出处
期刊:Clinical Nuclear Medicine [Lippincott Williams & Wilkins]
卷期号:48 (1): 1-7 被引量:7
标识
DOI:10.1097/rlu.0000000000004433
摘要

Purpose The study aimed to develop a deep learning model for predicting amnestic mild cognitive impairment (aMCI) diagnosis using radiomic features and amyloid brain PET. Patients and Methods Subjects (n = 328) from the Alzheimer’s Disease Neuroimaging Initiative database and the EudraCT 2015-001184-39 trial (159 males, 169 females), with a mean age of 72 ± 7.4 years, underwent PET/CT with 18 F-florbetaben. The study cohort consisted of normal controls (n = 149) and subjects with aMCI (n = 179). Thirteen gray-level run-length matrix radiomic features and amyloid loads were extracted from 27 cortical brain areas. The least absolute shrinkage and selection operator regression was used to select features with the highest predictive value. A feed-forward neural multilayer network was trained, validated, and tested on 70%, 15%, and 15% of the sample, respectively. Accuracy, precision, F1-score, and area under the curve were used to assess model performance. SUV performance in predicting the diagnosis of aMCI was also assessed and compared with that obtained from the machine learning model. Results The machine learning model achieved an area under the receiver operating characteristic curve of 90% (95% confidence interval, 89.4–90.4) on the test set, with 80% and 78% for accuracy and F1-score, respectively. The deep learning model outperformed SUV performance (area under the curve, 71%; 95% confidence interval, 69.7–71.4; 57% accuracy, 48% F1-score). Conclusions Using radiomic and amyloid PET load, the machine learning model identified MCI subjects with 84% specificity at 81% sensitivity. These findings show that a deep learning algorithm based on radiomic data and amyloid load obtained from brain PET images improves the prediction of MCI diagnosis compared with SUV alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃蔬菜发布了新的文献求助10
刚刚
时尚松鼠完成签到,获得积分10
刚刚
2秒前
浮游应助神奇海螺采纳,获得10
2秒前
2秒前
3秒前
AA完成签到 ,获得积分10
3秒前
打打应助激动的项链采纳,获得10
3秒前
Raojas完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Akim应助Sugarhm采纳,获得10
5秒前
罗那发布了新的文献求助10
6秒前
6秒前
xcky0917完成签到,获得积分10
7秒前
LiLi完成签到,获得积分10
7秒前
赫连山菡发布了新的文献求助10
8秒前
eddy发布了新的文献求助10
8秒前
bkagyin应助12采纳,获得10
8秒前
张zhang发布了新的文献求助10
9秒前
HH发布了新的文献求助10
9秒前
9秒前
9秒前
所所应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933690
求助须知:如何正确求助?哪些是违规求助? 4201746
关于积分的说明 13054958
捐赠科研通 3975817
什么是DOI,文献DOI怎么找? 2178602
邀请新用户注册赠送积分活动 1194932
关于科研通互助平台的介绍 1106316