Machine Learning Model to Predict Diagnosis of Mild Cognitive Impairment by Using Radiomic and Amyloid Brain PET

医学 人工智能 认知障碍 Pet成像 淀粉样蛋白(真菌学) 认知 核医学 正电子发射断层摄影术 医学物理学 病理 计算机科学 精神科
作者
Andrea Ciarmiello,Elisabetta Giovannini,Sara Pastorino,O. Ferrando,F. Foppiano,Antonio Mannironi,Antonio Tartaglione,Giampiero Giovacchini
出处
期刊:Clinical Nuclear Medicine [Lippincott Williams & Wilkins]
卷期号:48 (1): 1-7 被引量:7
标识
DOI:10.1097/rlu.0000000000004433
摘要

Purpose The study aimed to develop a deep learning model for predicting amnestic mild cognitive impairment (aMCI) diagnosis using radiomic features and amyloid brain PET. Patients and Methods Subjects (n = 328) from the Alzheimer’s Disease Neuroimaging Initiative database and the EudraCT 2015-001184-39 trial (159 males, 169 females), with a mean age of 72 ± 7.4 years, underwent PET/CT with 18 F-florbetaben. The study cohort consisted of normal controls (n = 149) and subjects with aMCI (n = 179). Thirteen gray-level run-length matrix radiomic features and amyloid loads were extracted from 27 cortical brain areas. The least absolute shrinkage and selection operator regression was used to select features with the highest predictive value. A feed-forward neural multilayer network was trained, validated, and tested on 70%, 15%, and 15% of the sample, respectively. Accuracy, precision, F1-score, and area under the curve were used to assess model performance. SUV performance in predicting the diagnosis of aMCI was also assessed and compared with that obtained from the machine learning model. Results The machine learning model achieved an area under the receiver operating characteristic curve of 90% (95% confidence interval, 89.4–90.4) on the test set, with 80% and 78% for accuracy and F1-score, respectively. The deep learning model outperformed SUV performance (area under the curve, 71%; 95% confidence interval, 69.7–71.4; 57% accuracy, 48% F1-score). Conclusions Using radiomic and amyloid PET load, the machine learning model identified MCI subjects with 84% specificity at 81% sensitivity. These findings show that a deep learning algorithm based on radiomic data and amyloid load obtained from brain PET images improves the prediction of MCI diagnosis compared with SUV alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时笙完成签到 ,获得积分10
1秒前
2秒前
易千妤完成签到 ,获得积分10
2秒前
不吃胡萝卜完成签到 ,获得积分10
2秒前
烟花应助LX采纳,获得10
7秒前
7秒前
wxr发布了新的文献求助10
7秒前
玛卡巴卡完成签到,获得积分10
8秒前
迟暮完成签到 ,获得积分10
8秒前
lin完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
CodeCraft应助xiaopei采纳,获得10
11秒前
木头发布了新的文献求助50
12秒前
elina完成签到,获得积分20
14秒前
15秒前
木头人呐完成签到 ,获得积分10
16秒前
xiaopei完成签到,获得积分10
19秒前
19秒前
20秒前
哈哈哈完成签到,获得积分20
22秒前
23秒前
铅笔995完成签到,获得积分10
24秒前
幽默的乐双完成签到,获得积分10
24秒前
风中的金鱼关注了科研通微信公众号
25秒前
狗子完成签到 ,获得积分10
25秒前
gzupppp完成签到 ,获得积分10
32秒前
Akim应助谨慎的咖啡豆采纳,获得10
32秒前
sq完成签到,获得积分20
34秒前
明杰完成签到,获得积分10
34秒前
35秒前
十八完成签到 ,获得积分10
36秒前
我是老大应助DawudShan采纳,获得10
37秒前
wanci应助TGU的小马同学采纳,获得10
37秒前
39秒前
yaruyou发布了新的文献求助30
39秒前
斯文败类应助毕春宇采纳,获得10
40秒前
猪猪hero发布了新的文献求助10
41秒前
雪儿完成签到,获得积分10
43秒前
44秒前
瓜地学龙叫完成签到,获得积分10
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511