欧米茄
数学
多重性(数学)
歧管(流体力学)
黎曼流形
组合数学
边界(拓扑)
内哈里歧管
非线性系统
数学物理
数学分析
物理
量子力学
机械工程
工程类
作者
Pietro d’Avenia,Marco Ghimenti
标识
DOI:10.1007/s00526-022-02341-1
摘要
We prove a multiplicity result for $$\begin{aligned} {\left\{ \begin{array}{ll} -\varepsilon ^{2}\Delta _g u+\omega u+q^{2}\phi u=|u|^{p-2}u\\ -\Delta _g \phi +a^{2}\Delta _g^{2} \phi + m^2 \phi =4\pi u^{2} \end{array}\right. } \text { in }M, \end{aligned}$$ where (M, g) is a smooth and compact 3-dimensional Riemannian manifold without boundary, $$p\in (4,6)$$ , $$a,m,q\ne 0$$ , $$\varepsilon >0$$ small enough. The proof of this result relies on Lusternik–Schnirellman category. We also provide a profile description for low energy solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI