Sentiment Analysis: Comprehensive Reviews, Recent Advances, and Open Challenges

计算机科学 数据科学 情绪分析 人工智能
作者
Qiang Lu,Xia Sun,Yunfei Long,Zhizezhang Gao,Jun Feng,Tong Sun
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15092-15112 被引量:13
标识
DOI:10.1109/tnnls.2023.3294810
摘要

Sentiment analysis (SA) aims to understand the attitudes and views of opinion holders with computers. Previous studies have achieved significant breakthroughs and extensive applications in the past decade, such as public opinion analysis and intelligent voice service. With the rapid development of deep learning, SA based on various modalities has become a research hotspot. However, only individual modality has been analyzed separately, lacking a systematic carding of comprehensive SA methods. Meanwhile, few surveys covering the topic of multimodal SA (MSA) have been explored yet. In this article, we first take the modality as the thread to design a novel framework of SA tasks to provide researchers with a comprehensive understanding of relevant advances in SA. Then, we introduce the general workflows and recent advances of single-modal in detail, discuss the similarities and differences of single-modal SA in data processing and modeling to guide MSA, and summarize the commonly used datasets to provide guidance on data and methods for researchers according to different task types. Next, a new taxonomy is proposed to fill the research gaps in MSA, which is divided into multimodal representation learning and multimodal data fusion. The similarities and differences between these two methods and the latest advances are described in detail, such as dynamic interaction between multimodalities, and the multimodal fusion technologies are further expanded. Moreover, we explore the advanced studies on multimodal alignment, chatbots, and Chat Generative Pre-trained Transformer (ChatGPT) in SA. Finally, we discuss the open research challenges of MSA and provide four potential aspects to improve future works, such as cross-modal contrastive learning and multimodal pretraining models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
heiztcasino发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
小蚊子发布了新的文献求助10
3秒前
qiaoj2006完成签到,获得积分10
3秒前
许欣瑞完成签到,获得积分10
3秒前
CipherSage应助ldy采纳,获得10
3秒前
tectextey发布了新的文献求助10
4秒前
万能图书馆应助KYTQQ采纳,获得20
5秒前
保住头发为科研完成签到,获得积分10
6秒前
田様应助北纬打工人采纳,获得10
6秒前
科目三应助无心的青槐采纳,获得20
6秒前
heiztcasino完成签到,获得积分10
6秒前
大个应助科研通管家采纳,获得10
7秒前
彭于晏应助晚霞常有遗憾采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
攀攀发布了新的文献求助10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
blackbody发布了新的文献求助30
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
淡淡朝阳发布了新的文献求助20
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
暖暖关注了科研通微信公众号
7秒前
华仔应助科研通管家采纳,获得10
7秒前
wuchang完成签到 ,获得积分10
7秒前
聪慧小霜应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得20
8秒前
CipherSage应助qiongqiong采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403