Sentiment Analysis: Comprehensive Reviews, Recent Advances, and Open Challenges

计算机科学 数据科学 情绪分析 人工智能
作者
Qiang Lu,Xia Sun,Yunfei Long,Zhizezhang Gao,Jun Feng,Tong Sun
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15092-15112 被引量:13
标识
DOI:10.1109/tnnls.2023.3294810
摘要

Sentiment analysis (SA) aims to understand the attitudes and views of opinion holders with computers. Previous studies have achieved significant breakthroughs and extensive applications in the past decade, such as public opinion analysis and intelligent voice service. With the rapid development of deep learning, SA based on various modalities has become a research hotspot. However, only individual modality has been analyzed separately, lacking a systematic carding of comprehensive SA methods. Meanwhile, few surveys covering the topic of multimodal SA (MSA) have been explored yet. In this article, we first take the modality as the thread to design a novel framework of SA tasks to provide researchers with a comprehensive understanding of relevant advances in SA. Then, we introduce the general workflows and recent advances of single-modal in detail, discuss the similarities and differences of single-modal SA in data processing and modeling to guide MSA, and summarize the commonly used datasets to provide guidance on data and methods for researchers according to different task types. Next, a new taxonomy is proposed to fill the research gaps in MSA, which is divided into multimodal representation learning and multimodal data fusion. The similarities and differences between these two methods and the latest advances are described in detail, such as dynamic interaction between multimodalities, and the multimodal fusion technologies are further expanded. Moreover, we explore the advanced studies on multimodal alignment, chatbots, and Chat Generative Pre-trained Transformer (ChatGPT) in SA. Finally, we discuss the open research challenges of MSA and provide four potential aspects to improve future works, such as cross-modal contrastive learning and multimodal pretraining models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经凝琴关注了科研通微信公众号
刚刚
ding应助啊擦删除采纳,获得10
1秒前
0℃冰封发布了新的文献求助10
2秒前
qingsi完成签到 ,获得积分10
2秒前
2秒前
满意剑成完成签到,获得积分10
3秒前
3秒前
kryptonite发布了新的文献求助10
4秒前
4秒前
zn关注了科研通微信公众号
4秒前
紧张的幼菱完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助1235采纳,获得10
6秒前
粗暴的鱼完成签到,获得积分10
6秒前
7秒前
xlz发布了新的文献求助10
7秒前
子车茗应助tommy999采纳,获得30
8秒前
abc97完成签到,获得积分10
9秒前
9秒前
耶斯发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
中和皇极应助傅夜山采纳,获得10
11秒前
科研通AI6应助傅夜山采纳,获得10
12秒前
12秒前
啊擦删除发布了新的文献求助10
12秒前
12秒前
12秒前
CodeCraft应助kwi采纳,获得10
13秒前
BowieHuang应助rnanoda采纳,获得10
13秒前
箱子发布了新的文献求助10
14秒前
男研选手发布了新的文献求助10
15秒前
15秒前
15秒前
李可汗发布了新的文献求助10
15秒前
打打应助plain采纳,获得10
15秒前
精明觅山发布了新的文献求助10
16秒前
16秒前
背后无剑发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589279
求助须知:如何正确求助?哪些是违规求助? 4674065
关于积分的说明 14791491
捐赠科研通 4628070
什么是DOI,文献DOI怎么找? 2532220
邀请新用户注册赠送积分活动 1500838
关于科研通互助平台的介绍 1468437