Machine learning assisted high-throughput computational screening of MOFs for the capture of chemical warfare agents from the air

吸附 纳米孔 偏苯三甲酸 金属有机骨架 多孔性 氢键 硫化氢 材料科学 纳米技术 化学工程 化学 分子 有机化学 工程类 硫黄
作者
Wenfei Wang,Lulu Zhang,Chengzhi Cai,Shuhua Li,Hong Liang,Yufang Wu,Zheng He,Zhiwei Qiao
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:325: 124546-124546 被引量:9
标识
DOI:10.1016/j.seppur.2023.124546
摘要

To effectively capture the low-concentration chemical warfare agents (CWAs) and their simulants which are extremely harmful to human health and environment, the properties of thousands of Computation-Ready, Experimental Metal-Organic Frameworks (CoRE-MOFs) for the adsorption and separation of four CWAs and simulants (dimethyl methyl phosphonate, soman, mustard gas, and 2-chloroethyl ethyl sulfide) from the air were calculated by high-throughput computational screening. To reasonably identify the top-performing MOFs, the trade-off between selectivity and adsorption capacity (TSN) was introduced to measure the properties of MOFs. Five machine learning algorithms were employed to quantitatively evaluate the structure-performance relationships of MOFs for the adsorption of CWAs and validate that Extreme Gradient Boosting algorithms had the best prediction accuracy. Furthermore, four MOF descriptors (henry coefficient, number of hydrogen bonds, porosity, and volumetric surface area) were found to have significant influence on the properties of MOFs. Finally, it was determined that the number of hydrogen bond acceptors was a key factor governing the co-adsorption of CWAs and their simulants, and the similarities of adsorbents with good adsorption performance included Zn for metal center, trimesic acid for organic linker, and srs for topology. The microscopic insights obtained from our bottom-up approach are very helpful for the development of MOFs and other nanoporous materials for the capture of CWAs from the air.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助旺仔糖采纳,获得10
刚刚
bob发布了新的文献求助10
刚刚
小亓发布了新的文献求助10
刚刚
3秒前
漱泉枕石完成签到,获得积分10
3秒前
华仔应助edtaa采纳,获得10
3秒前
田様应助euy采纳,获得10
3秒前
外向汽车发布了新的文献求助10
4秒前
Nextf1sh完成签到,获得积分10
4秒前
xxy关注了科研通微信公众号
5秒前
科研通AI5应助张立敏采纳,获得10
7秒前
7秒前
8秒前
铁甲小宝完成签到,获得积分10
8秒前
77完成签到,获得积分10
8秒前
SallyLuo完成签到,获得积分10
8秒前
9秒前
fdawn完成签到,获得积分10
9秒前
旺仔糖完成签到,获得积分20
10秒前
上官若男应助闹心采纳,获得10
11秒前
量子星尘发布了新的文献求助150
11秒前
大米发布了新的文献求助30
11秒前
秋风暖暖发布了新的文献求助10
12秒前
爆米花应助萧萧萧采纳,获得10
13秒前
微笑不可完成签到 ,获得积分10
13秒前
带着太阳去旅行完成签到,获得积分20
13秒前
千日粉发布了新的文献求助10
14秒前
14秒前
edtaa完成签到,获得积分10
15秒前
天天开心完成签到,获得积分10
15秒前
漱泉枕石发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
xu完成签到,获得积分20
17秒前
bob完成签到,获得积分10
20秒前
20秒前
田様应助鲤鱼烙采纳,获得10
21秒前
Sea_U应助Sylvie采纳,获得10
21秒前
张立敏发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048792
求助须知:如何正确求助?哪些是违规求助? 4277060
关于积分的说明 13332258
捐赠科研通 4091605
什么是DOI,文献DOI怎么找? 2239138
邀请新用户注册赠送积分活动 1246031
关于科研通互助平台的介绍 1174599