Machine learning assisted high-throughput computational screening of MOFs for the capture of chemical warfare agents from the air

吸附 纳米孔 偏苯三甲酸 金属有机骨架 多孔性 氢键 硫化氢 材料科学 纳米技术 化学工程 化学 分子 有机化学 工程类 硫黄
作者
Wenfei Wang,Lulu Zhang,Chengzhi Cai,Shuhua Li,Hong Liang,Yufang Wu,Zheng He,Zhiwei Qiao
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:325: 124546-124546 被引量:5
标识
DOI:10.1016/j.seppur.2023.124546
摘要

To effectively capture the low-concentration chemical warfare agents (CWAs) and their simulants which are extremely harmful to human health and environment, the properties of thousands of Computation-Ready, Experimental Metal-Organic Frameworks (CoRE-MOFs) for the adsorption and separation of four CWAs and simulants (dimethyl methyl phosphonate, soman, mustard gas, and 2-chloroethyl ethyl sulfide) from the air were calculated by high-throughput computational screening. To reasonably identify the top-performing MOFs, the trade-off between selectivity and adsorption capacity (TSN) was introduced to measure the properties of MOFs. Five machine learning algorithms were employed to quantitatively evaluate the structure-performance relationships of MOFs for the adsorption of CWAs and validate that Extreme Gradient Boosting algorithms had the best prediction accuracy. Furthermore, four MOF descriptors (henry coefficient, number of hydrogen bonds, porosity, and volumetric surface area) were found to have significant influence on the properties of MOFs. Finally, it was determined that the number of hydrogen bond acceptors was a key factor governing the co-adsorption of CWAs and their simulants, and the similarities of adsorbents with good adsorption performance included Zn for metal center, trimesic acid for organic linker, and srs for topology. The microscopic insights obtained from our bottom-up approach are very helpful for the development of MOFs and other nanoporous materials for the capture of CWAs from the air.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Azusa完成签到,获得积分10
刚刚
顽固分子完成签到 ,获得积分10
刚刚
Jing完成签到,获得积分10
2秒前
ArkZ完成签到 ,获得积分10
3秒前
俗签完成签到,获得积分10
3秒前
zhj完成签到,获得积分10
5秒前
5秒前
如泣草芥完成签到,获得积分10
6秒前
6秒前
7秒前
从容白凝完成签到,获得积分10
8秒前
9秒前
zzahyc发布了新的文献求助10
10秒前
甄的艾你完成签到,获得积分10
10秒前
Pauline完成签到 ,获得积分10
11秒前
我是老大应助Air采纳,获得10
12秒前
不是省油的灯完成签到,获得积分10
12秒前
12秒前
温暖易云发布了新的文献求助10
13秒前
诸葛烤鸭完成签到 ,获得积分10
13秒前
lilili完成签到,获得积分20
15秒前
Bizibili完成签到,获得积分10
16秒前
XianyunWang完成签到,获得积分10
16秒前
张豪杰完成签到 ,获得积分10
18秒前
雨辰发布了新的文献求助10
19秒前
时尚幻莲发布了新的文献求助10
19秒前
20秒前
21秒前
科研通AI2S应助天涯倦客采纳,获得10
22秒前
AOPs完成签到,获得积分10
22秒前
duxiao完成签到 ,获得积分10
23秒前
温暖易云完成签到,获得积分10
25秒前
AOPs发布了新的文献求助10
25秒前
TRz发布了新的文献求助10
26秒前
xiaoxiao完成签到,获得积分10
27秒前
小黑子完成签到,获得积分10
28秒前
前程似锦完成签到 ,获得积分10
29秒前
华仔应助李李采纳,获得10
29秒前
雨辰完成签到,获得积分10
31秒前
且从容完成签到,获得积分10
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790837
关于积分的说明 7796725
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301727
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194