Feature Extraction and Selection for Identifying Faults in Contactors Using Fiber Bragg Grating

接触器 光纤布拉格光栅 计算机科学 电磁干扰 支持向量机 特征提取 冗余(工程) 电子工程 工程类 功率(物理) 人工智能 光纤 电磁干扰 电信 物理 量子力学 操作系统
作者
Daniel D. Benetti,Eduardo Henrique Dureck,Uilian José Dreyer,Daniel Rodrigues Pipa,Jean Carlos Cardozo da Silva
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (17): 20357-20367
标识
DOI:10.1109/jsen.2023.3296749
摘要

Switching devices are used in a wide application field to control and protect electrical systems. Failures in such equipment cause a loss of reliability in electrical facilities, which can lead to catastrophic consequences. The main advantage of using optical sensors is their immunity to the electromagnetic field, allowing installation in unfeasible locations compared to other technologies presented in related works. Consequently, the proposed approach consists of a new application employing fiber Bragg grating (FBG) to measure dynamic strain signals while switching a low-voltage contactor and develop a signal processing algorithm to extract and select features for classification using supervised learning methods. The models were trained and validated with different measurement sets, dividing them into intermediate and critical wear-out stages. The test procedures were carried out in a controlled manner replacing the contactor’s main internal components. Two feature extraction methods were evaluated. The first calculates the power spectral density (PSD) and the switching time, while the second considers the coefficients generated by the wavelet scattering transform (WST). With maximum relevance and minimum redundancy (mRMR) and the support vector machine (SVM) algorithms, it was possible to identify components states, obtaining an accuracy of 99.4% for cross validation, 100% for validation dataset, and 86.4% for the new test dataset. The results demonstrate that the proposed system can recognize critical faults and is promising to be applied in other types of commutation equipment in future applications striving to increase the complexity of the evaluated devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
传奇3应助wan采纳,获得10
刚刚
Glorious发布了新的文献求助10
1秒前
1秒前
游若发布了新的文献求助30
1秒前
Dicy发布了新的文献求助10
1秒前
MchemG应助诗歌节公社采纳,获得10
1秒前
kitty完成签到 ,获得积分10
2秒前
范同学发布了新的文献求助10
3秒前
土书发布了新的文献求助30
4秒前
神秘假人发布了新的文献求助10
4秒前
迷路枫发布了新的文献求助20
4秒前
cortisone完成签到 ,获得积分10
5秒前
dong应助乐观寄真采纳,获得10
5秒前
脑洞疼应助Dicy采纳,获得10
5秒前
科目三应助黄腾采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
braver发布了新的文献求助10
7秒前
研友_VZG7GZ应助范啦啦啦采纳,获得10
7秒前
yanna完成签到,获得积分10
7秒前
7秒前
坚强的缘分完成签到,获得积分10
8秒前
9秒前
9秒前
KIORking完成签到,获得积分10
9秒前
直率的画笔完成签到,获得积分10
10秒前
神秘假人完成签到,获得积分10
10秒前
15秒前
Hello应助科研通管家采纳,获得20
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
some应助科研通管家采纳,获得10
16秒前
柯一一应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
16秒前
17秒前
千跃应助科研通管家采纳,获得20
17秒前
Loooong应助科研通管家采纳,获得20
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959583
求助须知:如何正确求助?哪些是违规求助? 3505844
关于积分的说明 11126416
捐赠科研通 3237765
什么是DOI,文献DOI怎么找? 1789326
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802963