Feature Extraction and Selection for Identifying Faults in Contactors Using Fiber Bragg Grating

接触器 光纤布拉格光栅 计算机科学 电磁干扰 支持向量机 特征提取 冗余(工程) 电子工程 工程类 功率(物理) 人工智能 光纤 电磁干扰 电信 操作系统 物理 量子力学
作者
Daniel D. Benetti,Eduardo Henrique Dureck,Uilian José Dreyer,Daniel Rodrigues Pipa,Jean Carlos Cardozo da Silva
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (17): 20357-20367
标识
DOI:10.1109/jsen.2023.3296749
摘要

Switching devices are used in a wide application field to control and protect electrical systems. Failures in such equipment cause a loss of reliability in electrical facilities, which can lead to catastrophic consequences. The main advantage of using optical sensors is their immunity to the electromagnetic field, allowing installation in unfeasible locations compared to other technologies presented in related works. Consequently, the proposed approach consists of a new application employing fiber Bragg grating (FBG) to measure dynamic strain signals while switching a low-voltage contactor and develop a signal processing algorithm to extract and select features for classification using supervised learning methods. The models were trained and validated with different measurement sets, dividing them into intermediate and critical wear-out stages. The test procedures were carried out in a controlled manner replacing the contactor’s main internal components. Two feature extraction methods were evaluated. The first calculates the power spectral density (PSD) and the switching time, while the second considers the coefficients generated by the wavelet scattering transform (WST). With maximum relevance and minimum redundancy (mRMR) and the support vector machine (SVM) algorithms, it was possible to identify components states, obtaining an accuracy of 99.4% for cross validation, 100% for validation dataset, and 86.4% for the new test dataset. The results demonstrate that the proposed system can recognize critical faults and is promising to be applied in other types of commutation equipment in future applications striving to increase the complexity of the evaluated devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助化简为繁采纳,获得30
刚刚
乐观海云完成签到 ,获得积分10
刚刚
陈咪咪完成签到,获得积分10
刚刚
Ares完成签到,获得积分10
1秒前
浮游应助imi采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
4秒前
Greg应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
张庭豪完成签到,获得积分10
4秒前
6秒前
sdjjis完成签到 ,获得积分10
6秒前
Snail6完成签到,获得积分10
7秒前
研友_LX7zK8完成签到,获得积分10
8秒前
简奥斯汀完成签到 ,获得积分10
8秒前
wxp5294完成签到,获得积分10
8秒前
8秒前
寒冷丹雪完成签到,获得积分10
8秒前
缺缺完成签到,获得积分10
9秒前
牛仔完成签到 ,获得积分10
10秒前
11秒前
时有落花至完成签到,获得积分10
12秒前
可靠的千凝完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
清爽朋友完成签到,获得积分10
12秒前
QQ完成签到 ,获得积分10
13秒前
化简为繁完成签到,获得积分10
13秒前
金桔希子完成签到,获得积分10
14秒前
16秒前
青青完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
小蘑菇噢噢噢完成签到,获得积分10
17秒前
wd完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071