Feature Extraction and Selection for Identifying Faults in Contactors Using Fiber Bragg Grating

接触器 光纤布拉格光栅 计算机科学 电磁干扰 支持向量机 特征提取 冗余(工程) 电子工程 工程类 功率(物理) 人工智能 光纤 电磁干扰 电信 物理 量子力学 操作系统
作者
Daniel D. Benetti,Eduardo Henrique Dureck,Uilian José Dreyer,Daniel Rodrigues Pipa,Jean Carlos Cardozo da Silva
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (17): 20357-20367
标识
DOI:10.1109/jsen.2023.3296749
摘要

Switching devices are used in a wide application field to control and protect electrical systems. Failures in such equipment cause a loss of reliability in electrical facilities, which can lead to catastrophic consequences. The main advantage of using optical sensors is their immunity to the electromagnetic field, allowing installation in unfeasible locations compared to other technologies presented in related works. Consequently, the proposed approach consists of a new application employing fiber Bragg grating (FBG) to measure dynamic strain signals while switching a low-voltage contactor and develop a signal processing algorithm to extract and select features for classification using supervised learning methods. The models were trained and validated with different measurement sets, dividing them into intermediate and critical wear-out stages. The test procedures were carried out in a controlled manner replacing the contactor’s main internal components. Two feature extraction methods were evaluated. The first calculates the power spectral density (PSD) and the switching time, while the second considers the coefficients generated by the wavelet scattering transform (WST). With maximum relevance and minimum redundancy (mRMR) and the support vector machine (SVM) algorithms, it was possible to identify components states, obtaining an accuracy of 99.4% for cross validation, 100% for validation dataset, and 86.4% for the new test dataset. The results demonstrate that the proposed system can recognize critical faults and is promising to be applied in other types of commutation equipment in future applications striving to increase the complexity of the evaluated devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
明理的天蓝完成签到,获得积分10
2秒前
咳咳发布了新的文献求助10
2秒前
木叶研完成签到,获得积分10
2秒前
无花果应助通~采纳,获得10
2秒前
3秒前
4秒前
周助发布了新的文献求助10
4秒前
伯赏秋白完成签到,获得积分10
4秒前
慕青应助sunzhiyu233采纳,获得10
4秒前
Sherwin完成签到,获得积分10
4秒前
羽毛完成签到,获得积分20
5秒前
xiongjian发布了新的文献求助10
5秒前
一方通行完成签到 ,获得积分10
5秒前
5秒前
monster0101完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
Stvn完成签到,获得积分20
7秒前
核桃发布了新的文献求助10
7秒前
跳跃的太阳完成签到,获得积分10
8秒前
8秒前
enoot完成签到,获得积分10
8秒前
dalin完成签到,获得积分10
8秒前
YE发布了新的文献求助10
8秒前
buno应助外向的沅采纳,获得10
8秒前
体贴啤酒发布了新的文献求助10
9秒前
花痴的谷雪完成签到,获得积分10
9秒前
9秒前
圈圈发布了新的文献求助10
9秒前
亮亮完成签到,获得积分10
9秒前
没有稗子完成签到 ,获得积分10
9秒前
科研小民工应助明亮的斩采纳,获得30
9秒前
10秒前
10秒前
小可发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740