Feature Extraction and Selection for Identifying Faults in Contactors Using Fiber Bragg Grating

接触器 光纤布拉格光栅 计算机科学 电磁干扰 支持向量机 特征提取 冗余(工程) 电子工程 工程类 功率(物理) 人工智能 光纤 电磁干扰 电信 物理 量子力学 操作系统
作者
Daniel D. Benetti,Eduardo Henrique Dureck,Uilian José Dreyer,Daniel Rodrigues Pipa,Jean Carlos Cardozo da Silva
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (17): 20357-20367
标识
DOI:10.1109/jsen.2023.3296749
摘要

Switching devices are used in a wide application field to control and protect electrical systems. Failures in such equipment cause a loss of reliability in electrical facilities, which can lead to catastrophic consequences. The main advantage of using optical sensors is their immunity to the electromagnetic field, allowing installation in unfeasible locations compared to other technologies presented in related works. Consequently, the proposed approach consists of a new application employing fiber Bragg grating (FBG) to measure dynamic strain signals while switching a low-voltage contactor and develop a signal processing algorithm to extract and select features for classification using supervised learning methods. The models were trained and validated with different measurement sets, dividing them into intermediate and critical wear-out stages. The test procedures were carried out in a controlled manner replacing the contactor’s main internal components. Two feature extraction methods were evaluated. The first calculates the power spectral density (PSD) and the switching time, while the second considers the coefficients generated by the wavelet scattering transform (WST). With maximum relevance and minimum redundancy (mRMR) and the support vector machine (SVM) algorithms, it was possible to identify components states, obtaining an accuracy of 99.4% for cross validation, 100% for validation dataset, and 86.4% for the new test dataset. The results demonstrate that the proposed system can recognize critical faults and is promising to be applied in other types of commutation equipment in future applications striving to increase the complexity of the evaluated devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助魔幻的雁采纳,获得10
1秒前
yph完成签到,获得积分10
2秒前
2秒前
3秒前
希望天下0贩的0应助超chao采纳,获得10
3秒前
科研GO发布了新的文献求助10
3秒前
儒雅无招发布了新的文献求助10
3秒前
英俊的铭应助oyc采纳,获得10
3秒前
4秒前
汉堡包应助lalala采纳,获得10
4秒前
木风2023发布了新的文献求助10
5秒前
5秒前
lvsehx发布了新的文献求助10
6秒前
敏宝完成签到,获得积分10
6秒前
9秒前
10秒前
11关闭了11文献求助
11秒前
美少叔叔发布了新的文献求助10
11秒前
wangtj完成签到,获得积分10
12秒前
科研通AI2S应助lvsehx采纳,获得10
12秒前
YYH完成签到,获得积分10
13秒前
1111发布了新的文献求助10
13秒前
叶颤完成签到,获得积分10
14秒前
杨杨杨完成签到,获得积分10
14秒前
14秒前
LQ完成签到 ,获得积分10
14秒前
科研通AI2S应助馒头采纳,获得10
14秒前
16秒前
隐形曼青应助wangtj采纳,获得10
17秒前
17秒前
pluto应助leungya采纳,获得10
19秒前
丰知然应助Jay采纳,获得10
20秒前
star发布了新的文献求助10
20秒前
自由迎蕾关注了科研通微信公众号
20秒前
yan完成签到 ,获得积分10
21秒前
柠栀应助动听的鸭子采纳,获得10
23秒前
Orange应助儒雅无招采纳,获得10
24秒前
程艳发布了新的文献求助10
25秒前
忘忧草发布了新的文献求助20
26秒前
郝从安完成签到,获得积分10
26秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207077
求助须知:如何正确求助?哪些是违规求助? 2856482
关于积分的说明 8105015
捐赠科研通 2521596
什么是DOI,文献DOI怎么找? 1354957
科研通“疑难数据库(出版商)”最低求助积分说明 642125
邀请新用户注册赠送积分活动 613343