GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks

计算机科学 理论计算机科学 图形 概率逻辑 拓扑图论 生成模型 人工智能 空模式 机器学习 特征学习 生成语法 电压图 数学 折线图 组合数学
作者
Wentao Zhao,Qitian Wu,Chenxiao Yang,Junchi Yan
标识
DOI:10.1145/3580305.3599373
摘要

Graph structure learning is a well-established problem that aims at optimizing graph structures adaptive to specific graph datasets to help message passing neural networks (i.e., GNNs) to yield effective and robust node embeddings. However, the common limitation of existing models lies in the underlying \textit{closed-world assumption}: the testing graph is the same as the training graph. This premise requires independently training the structure learning model from scratch for each graph dataset, which leads to prohibitive computation costs and potential risks for serious over-fitting. To mitigate these issues, this paper explores a new direction that moves forward to learn a universal structure learning model that can generalize across graph datasets in an open world. We first introduce the mathematical definition of this novel problem setting, and describe the model formulation from a probabilistic data-generative aspect. Then we devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs to capture the generalizable patterns of optimal message-passing topology across datasets. The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning. Across diverse datasets and various challenging cross-graph generalization protocols, our experiments show that even without training on target graphs, the proposed model i) significantly outperforms expressive GNNs trained on input (non-optimized) topology, and ii) surprisingly performs on par with state-of-the-art models that independently optimize adaptive structures for specific target graphs, with notably orders-of-magnitude acceleration for training on the target graph.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MicroCytoYL完成签到,获得积分10
1秒前
1秒前
一只特立独行的朱完成签到,获得积分10
1秒前
步行街车神ahua完成签到,获得积分10
1秒前
1秒前
keran完成签到,获得积分20
1秒前
1111发布了新的文献求助10
1秒前
动如脱兔发布了新的文献求助10
2秒前
starry完成签到,获得积分10
2秒前
3秒前
Grayball应助愉快的冰珍采纳,获得10
3秒前
3秒前
4秒前
Pangsj发布了新的文献求助10
4秒前
4秒前
4秒前
yzy完成签到,获得积分20
5秒前
6秒前
6秒前
Hang发布了新的文献求助10
6秒前
最初发布了新的文献求助10
7秒前
Lesile完成签到,获得积分10
7秒前
竹筏过海应助公西翠萱采纳,获得30
7秒前
7秒前
海子完成签到,获得积分10
8秒前
沉敛一生发布了新的文献求助10
8秒前
柏忆南完成签到 ,获得积分10
8秒前
li发布了新的文献求助10
8秒前
dldddz发布了新的文献求助10
8秒前
jimmy完成签到,获得积分10
8秒前
田様应助侦察兵采纳,获得10
8秒前
鑫渊完成签到,获得积分10
8秒前
天冷了hhhdh完成签到,获得积分10
9秒前
ting完成签到,获得积分10
9秒前
微笑完成签到,获得积分10
9秒前
可爱的函函应助西宁阿采纳,获得30
10秒前
蓝莓松饼发布了新的文献求助10
10秒前
11秒前
哈哈发布了新的文献求助10
11秒前
高高发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672