已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks

计算机科学 理论计算机科学 图形 概率逻辑 拓扑图论 生成模型 人工智能 空模式 机器学习 特征学习 生成语法 电压图 数学 折线图 组合数学
作者
Wentao Zhao,Qitian Wu,Chenxiao Yang,Junchi Yan
标识
DOI:10.1145/3580305.3599373
摘要

Graph structure learning is a well-established problem that aims at optimizing graph structures adaptive to specific graph datasets to help message passing neural networks (i.e., GNNs) to yield effective and robust node embeddings. However, the common limitation of existing models lies in the underlying \textit{closed-world assumption}: the testing graph is the same as the training graph. This premise requires independently training the structure learning model from scratch for each graph dataset, which leads to prohibitive computation costs and potential risks for serious over-fitting. To mitigate these issues, this paper explores a new direction that moves forward to learn a universal structure learning model that can generalize across graph datasets in an open world. We first introduce the mathematical definition of this novel problem setting, and describe the model formulation from a probabilistic data-generative aspect. Then we devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs to capture the generalizable patterns of optimal message-passing topology across datasets. The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning. Across diverse datasets and various challenging cross-graph generalization protocols, our experiments show that even without training on target graphs, the proposed model i) significantly outperforms expressive GNNs trained on input (non-optimized) topology, and ii) surprisingly performs on par with state-of-the-art models that independently optimize adaptive structures for specific target graphs, with notably orders-of-magnitude acceleration for training on the target graph.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快西牛完成签到 ,获得积分10
1秒前
小方应助jiwoong采纳,获得10
2秒前
2秒前
4秒前
7秒前
于东完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
李健应助科研通管家采纳,获得10
8秒前
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
zhongu应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
Akim应助Ephemeral采纳,获得10
10秒前
10秒前
linmu完成签到 ,获得积分10
11秒前
15秒前
陈三三发布了新的文献求助10
15秒前
猪宝完成签到,获得积分20
16秒前
17秒前
研友_VZG7GZ应助322628采纳,获得10
17秒前
肉肉完成签到,获得积分10
17秒前
祁尒发布了新的文献求助10
19秒前
多情的忆之完成签到,获得积分10
19秒前
20秒前
John发布了新的文献求助10
22秒前
可爱的函函应助铁甲小宝采纳,获得10
23秒前
woowoo发布了新的文献求助50
25秒前
寻雾启事完成签到,获得积分10
26秒前
28秒前
胖莹完成签到 ,获得积分10
29秒前
30秒前
研友_VZG7GZ应助大方明杰采纳,获得10
31秒前
周志轩66发布了新的文献求助10
31秒前
32秒前
32秒前
深情安青应助小巧谷波采纳,获得10
33秒前
852应助xxxx采纳,获得10
35秒前
deng发布了新的文献求助10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502916
关于积分的说明 11110677
捐赠科研通 3233882
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802191