Differentiable modelling to unify machine learning and physical models for geosciences

可解释性 机器学习 可微函数 人工智能 计算机科学 杠杆(统计) 外推法 人工神经网络 一致性(知识库) 数学 数学分析
作者
Chaopeng Shen,Alison P. Appling,Pierre Gentine,Toshiyuki Bandai,Hoshin V. Gupta,Alexandre M. Tartakovsky,Marco Baity‐Jesi,Fabrizio Fenicia,Daniel Kifer,Li Li,Xiaofeng Liu,Wei Ren,Yi Zheng,C. J. Harman,Martyn Clark,Matthew W. Farthing,Dapeng Feng,Praveen Kumar,Doaa Aboelyazeed,Farshid Rahmani
出处
期刊:Nature Reviews Earth & Environment [Nature Portfolio]
卷期号:4 (8): 552-567 被引量:169
标识
DOI:10.1038/s43017-023-00450-9
摘要

Process-based modelling offers interpretability and physical consistency in many domains of geosciences but struggles to leverage large datasets efficiently. Machine-learning methods, especially deep networks, have strong predictive skills yet are unable to answer specific scientific questions. In this Perspective, we explore differentiable modelling as a pathway to dissolve the perceived barrier between process-based modelling and machine learning in the geosciences and demonstrate its potential with examples from hydrological modelling. ‘Differentiable’ refers to accurately and efficiently calculating gradients with respect to model variables or parameters, enabling the discovery of high-dimensional unknown relationships. Differentiable modelling involves connecting (flexible amounts of) prior physical knowledge to neural networks, pushing the boundary of physics-informed machine learning. It offers better interpretability, generalizability, and extrapolation capabilities than purely data-driven machine learning, achieving a similar level of accuracy while requiring less training data. Additionally, the performance and efficiency of differentiable models scale well with increasing data volumes. Under data-scarce scenarios, differentiable models have outperformed machine-learning models in producing short-term dynamics and decadal-scale trends owing to the imposed physical constraints. Differentiable modelling approaches are primed to enable geoscientists to ask questions, test hypotheses, and discover unrecognized physical relationships. Future work should address computational challenges, reduce uncertainty, and verify the physical significance of outputs. Differentiable modelling is an approach that flexibly integrates the learning capability of machine learning with the interpretability of process-based models. This Perspective highlights the potential of differentiable modelling to improve the representation of processes, parameter estimation, and predictive accuracy in the geosciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
666完成签到 ,获得积分10
1秒前
1秒前
111完成签到,获得积分10
1秒前
吃饱饱完成签到,获得积分20
2秒前
2秒前
SYLH应助liuyanq采纳,获得10
2秒前
2秒前
SciGPT应助冷静的奇迹采纳,获得10
2秒前
3秒前
李健应助陈亚茹采纳,获得10
3秒前
王欣瑶发布了新的文献求助10
3秒前
光明磊落发布了新的文献求助10
5秒前
6秒前
xuan给xuan的求助进行了留言
6秒前
文小武完成签到,获得积分10
7秒前
DQ发布了新的文献求助10
7秒前
8秒前
hh完成签到,获得积分10
8秒前
9秒前
Hu完成签到,获得积分10
10秒前
研友_VZG7GZ应助yxlao采纳,获得10
10秒前
江姜发布了新的文献求助10
10秒前
11秒前
13秒前
大模型应助vv采纳,获得10
13秒前
zotero发布了新的文献求助10
15秒前
bkagyin应助科研通管家采纳,获得10
16秒前
coolkid应助科研通管家采纳,获得10
16秒前
albertxin发布了新的文献求助10
16秒前
coolkid应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350