亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differentiable modelling to unify machine learning and physical models for geosciences

可解释性 机器学习 可微函数 人工智能 计算机科学 杠杆(统计) 外推法 人工神经网络 一致性(知识库) 数学 数学分析
作者
Chaopeng Shen,Alison Appling,Pierre Gentine,Toshiyuki Bandai,Hoshin V. Gupta,Alexandre M. Tartakovsky,Marco Baity‐Jesi,Fabrizio Fenicia,Daniel Kifer,Li Li,Xiaofeng Liu,Wei Ren,Yi Zheng,C. J. Harman,Martyn Clark,Matthew W. Farthing,Dapeng Feng,Praveen Kumar,Doaa Aboelyazeed,Farshid Rahmani
出处
期刊:Nature Reviews Earth & Environment [Nature Portfolio]
卷期号:4 (8): 552-567 被引量:155
标识
DOI:10.1038/s43017-023-00450-9
摘要

Process-based modelling offers interpretability and physical consistency in many domains of geosciences but struggles to leverage large datasets efficiently. Machine-learning methods, especially deep networks, have strong predictive skills yet are unable to answer specific scientific questions. In this Perspective, we explore differentiable modelling as a pathway to dissolve the perceived barrier between process-based modelling and machine learning in the geosciences and demonstrate its potential with examples from hydrological modelling. ‘Differentiable’ refers to accurately and efficiently calculating gradients with respect to model variables or parameters, enabling the discovery of high-dimensional unknown relationships. Differentiable modelling involves connecting (flexible amounts of) prior physical knowledge to neural networks, pushing the boundary of physics-informed machine learning. It offers better interpretability, generalizability, and extrapolation capabilities than purely data-driven machine learning, achieving a similar level of accuracy while requiring less training data. Additionally, the performance and efficiency of differentiable models scale well with increasing data volumes. Under data-scarce scenarios, differentiable models have outperformed machine-learning models in producing short-term dynamics and decadal-scale trends owing to the imposed physical constraints. Differentiable modelling approaches are primed to enable geoscientists to ask questions, test hypotheses, and discover unrecognized physical relationships. Future work should address computational challenges, reduce uncertainty, and verify the physical significance of outputs. Differentiable modelling is an approach that flexibly integrates the learning capability of machine learning with the interpretability of process-based models. This Perspective highlights the potential of differentiable modelling to improve the representation of processes, parameter estimation, and predictive accuracy in the geosciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
满意若烟发布了新的文献求助10
9秒前
14秒前
剑指东方是为谁应助aineng采纳,获得10
21秒前
25秒前
37秒前
45秒前
123发布了新的文献求助10
52秒前
August完成签到,获得积分20
1分钟前
1分钟前
田様应助terry采纳,获得10
1分钟前
August发布了新的文献求助30
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
毓雅完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小张爱学习完成签到,获得积分20
1分钟前
2分钟前
mellow完成签到,获得积分10
2分钟前
麦冬冬完成签到,获得积分10
2分钟前
樱桃猴子完成签到,获得积分10
2分钟前
默默的化蛹完成签到 ,获得积分20
2分钟前
3分钟前
3分钟前
3分钟前
欧阳枫发布了新的文献求助10
3分钟前
ppppppp_76完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
明亮梦山完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
ning完成签到 ,获得积分10
5分钟前
For-t-发布了新的文献求助10
5分钟前
桓某人发布了新的文献求助10
5分钟前
5分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733391
求助须知:如何正确求助?哪些是违规求助? 3277605
关于积分的说明 10003426
捐赠科研通 2993596
什么是DOI,文献DOI怎么找? 1642768
邀请新用户注册赠送积分活动 780623
科研通“疑难数据库(出版商)”最低求助积分说明 748912