Differentiable modelling to unify machine learning and physical models for geosciences

可解释性 机器学习 可微函数 人工智能 计算机科学 杠杆(统计) 外推法 人工神经网络 一致性(知识库) 数学 数学分析
作者
Chaopeng Shen,Alison Appling,Pierre Gentine,Toshiyuki Bandai,Hoshin V. Gupta,Alexandre M. Tartakovsky,Marco Baity‐Jesi,Fabrizio Fenicia,Daniel Kifer,Yuanyuan Li,Xiaofeng Liu,Wei Ren,Yi Zheng,C. J. Harman,Martyn Clark,Matthew W. Farthing,Dapeng Feng,Praveen Kumar,Doaa Aboelyazeed,Farshid Rahmani,Yalan Song,Hylke E. Beck,Tadd Bindas,Dipankar Dwivedi,Kuai Fang,Marvin Höge,Christopher Rackauckas,Binayak P. Mohanty,Tirthankar Roy,Chonggang Xu,Kathryn Lawson
出处
期刊:Nature Reviews Earth & Environment [Springer Nature]
卷期号:4 (8): 552-567 被引量:76
标识
DOI:10.1038/s43017-023-00450-9
摘要

Process-based modelling offers interpretability and physical consistency in many domains of geosciences but struggles to leverage large datasets efficiently. Machine-learning methods, especially deep networks, have strong predictive skills yet are unable to answer specific scientific questions. In this Perspective, we explore differentiable modelling as a pathway to dissolve the perceived barrier between process-based modelling and machine learning in the geosciences and demonstrate its potential with examples from hydrological modelling. ‘Differentiable’ refers to accurately and efficiently calculating gradients with respect to model variables or parameters, enabling the discovery of high-dimensional unknown relationships. Differentiable modelling involves connecting (flexible amounts of) prior physical knowledge to neural networks, pushing the boundary of physics-informed machine learning. It offers better interpretability, generalizability, and extrapolation capabilities than purely data-driven machine learning, achieving a similar level of accuracy while requiring less training data. Additionally, the performance and efficiency of differentiable models scale well with increasing data volumes. Under data-scarce scenarios, differentiable models have outperformed machine-learning models in producing short-term dynamics and decadal-scale trends owing to the imposed physical constraints. Differentiable modelling approaches are primed to enable geoscientists to ask questions, test hypotheses, and discover unrecognized physical relationships. Future work should address computational challenges, reduce uncertainty, and verify the physical significance of outputs. Differentiable modelling is an approach that flexibly integrates the learning capability of machine learning with the interpretability of process-based models. This Perspective highlights the potential of differentiable modelling to improve the representation of processes, parameter estimation, and predictive accuracy in the geosciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
真实的采白完成签到 ,获得积分10
2秒前
fat完成签到,获得积分10
3秒前
摆烂的鲲完成签到,获得积分10
3秒前
QQ完成签到,获得积分10
3秒前
正在完成签到,获得积分10
4秒前
1234H发布了新的文献求助10
4秒前
小棉背心完成签到 ,获得积分10
5秒前
司音完成签到 ,获得积分10
6秒前
小花小宝和阿飞完成签到 ,获得积分10
6秒前
辛桥完成签到,获得积分10
9秒前
TuZhuling发布了新的文献求助10
9秒前
老迟到的机器猫完成签到,获得积分20
9秒前
lanhu完成签到 ,获得积分10
12秒前
13秒前
yyz完成签到,获得积分10
13秒前
烟花应助njusdf采纳,获得10
15秒前
如意完成签到,获得积分10
15秒前
RATHER完成签到,获得积分10
15秒前
euphoria发布了新的文献求助10
18秒前
Glory完成签到 ,获得积分10
19秒前
veraonly发布了新的文献求助10
20秒前
今夕何夕完成签到,获得积分20
20秒前
幽默的月光完成签到,获得积分10
23秒前
HH完成签到,获得积分10
25秒前
繁荣的忆文完成签到,获得积分10
25秒前
这丁完成签到,获得积分10
26秒前
颠覆乾坤完成签到,获得积分10
26秒前
QQQ应助东方越彬采纳,获得10
27秒前
什米发布了新的文献求助20
28秒前
酷炫的若剑完成签到,获得积分10
30秒前
geogydeniel完成签到 ,获得积分10
31秒前
guoxuefan完成签到,获得积分10
31秒前
听话的靖柏完成签到 ,获得积分10
32秒前
跳跃的电话完成签到,获得积分10
33秒前
wwwteng呀完成签到,获得积分10
33秒前
快乐水完成签到,获得积分10
33秒前
35秒前
123完成签到 ,获得积分10
35秒前
烟花应助任梓宁采纳,获得10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788133
关于积分的说明 7784741
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011